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A B ST R A C T

Outdoor sound propagation is affected by atmospheric conditions, includ-
ing temperature, humidity, pressure, and wind. Accurately predicting atmo-
spheric sound propagation has important applications in both civilian and
military contexts, such as minimizing noise pollution or enhancing mission
planning. We implement a Monte Carlo path tracer for predicting ground
noise levels in large outdoor scenes with arbitrary atmospheric conditions
by approximating atmospheric sound propagation as a series of linear ray
segments through a layered medium. We investigate the effectiveness of sev-
eral variance reduction methods and validate our method by analyzing the
results of various simulations for their physical accuracy, as well as com-
paring them to those obtained using established methods. Combining GPU-
acceleration and variance reduction methods, we achieve near real-time ca-
pabilities, enabling the future integration of the method into interactive tools.
However, we also demonstrate that performance benefits due to the linear
ray approximation come at the cost of reduced accuracy.
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1 I N T R O D U C T I O N

problem statement Outdoor sound propagation is strongly influenced
by atmospheric conditions such as temperature, humidity, pressure and wind.
A method to accurately predict atmospheric sound propagation has numer-
ous applications in both civilian and military contexts.

For example, it may be used for the planning of airport sites, making sure
that noise pollution in residential areas is minimized in all weather condi-
tions. Furthermore, it may assist flight planning, using routes that minimize
noise impact on civilians and wildlife, based on current weather conditions.

The way sound refracts in the atmosphere can influence the outcome of
a battle. There are numerous examples of this in the US Civil War [1]. Al-
though these instances are unlikely today due to modern communication
methods, the ability to accurately predict noise may prove useful in mission
planning for aircraft. Routes may be chosen that reduce the likelihood of
detection for stealth operations.

In the military context, time may be of essence. It is therefore important to
not only find an accurate, but also quick method for predicting noise levels
due to atmospheric conditions.

goal The goal of this thesis is to develop an efficient method for the pre-
diction of ground noise levels generated by a sound source in large outdoor
scenes, taking into account atmospheric conditions. The method should be
efficient enough to be used interactively. To this end, a Monte Carlo path
tracer is implemented, and both variance reduction strategies and hardware
acceleration are used to facilitate interactive use. Since available hardware is
optimized for linear rays, atmospheric propagation is modeled using linear
ray segments.

related work Several approaches to the simulation of atmospheric sound
propagation exist. These can generally be separated into two categories:
Wave-based numerical solutions and geometrical solutions.

Wave-based numerical approaches divide the environment into finite ele-
ments and solve the wave-equation using the Finite Element
Method (FEM) [2], the Boundary Element Method (BEM) [3] or the Finite
Difference Time Domain method (FDTD) [4]. These methods generally pro-
vide the most accurate results, but also take considerable time, making them
infeasible for interactive use.

In geometrical acoustics, wavefronts are modeled by rays.
Although stochastic rendering techniques are widespread in room acous-
tics [5] [6] [7] [8] [9], for atmospheric sound propagation in outdoor scenes
with non-homogeneous moving media, the established methods determin-
istically calculate rays between a source and microphone positions (also
known as Eigenrays), which requires solving differential

1



introduction 2

equations [10] [11] [12], making these infeasible for interactive use. In [13],
an analytical solution is derived and solved using a root-finding algorithm to
find Eigenrays. Whereas [10] and [11] do not model any reflections, [12] and
[13] only model specular reflections, and only one specular reflection per
microphone using the image-source method. Also, the terrain is assumed to
be completely flat, making these methods inapplicable for most scenarios.

In [6], photon mapping is applied to room acoustics. This is called sonel
mapping, or phonon mapping [14]. Our approach is similar, with the key
difference that there is no second step where rays are traced from a listener
position. In our case, we are interested in the global noise levels.

In [9], a bidirectional path tracing algorithm is developed for interactive
sound propagation. The presence of an atmosphere makes connecting two
paths non-trivial, hence, we implement a forwards path tracing algorithm.

This thesis is greatly inspired by a Master’s thesis dealing with refraction
due to differing sound speeds in underwater sound propagation [15], where
sound ray refraction has also been modeled using linear ray segments, al-
beit in a two-dimensional setting. The author is not aware of any published
works where Monte Carlo path tracing is applied to atmospheric sound prop-
agation with non-trivial terrain.

outline In Chapter 2, we establish the theoretical framework of our
method. We start with the basic theory of physically based rendering in Sec-
tion 2.1 before moving onto the Monte Carlo method in Section 2.2. We finish
the foundations with a section on acoustics in Section 2.3.

In Chapter 3, we discuss how the theoretical framework is implemented.
Starting with the rendering engine, NoiseTracer, in Section 3.1, then covering
performance improvements in Section 3.2 and finally discussing testing and
validation in Section 3.3.

The quality of the method is discussed in Chapter 4, where we begin with
establishing a set of three test scenes of various terrain types in Section 4.1,
then continue with an analysis of several simulations with respect to their
physical accuracy in Section 4.2. We proceed with discussing the effective-
ness of the variance reduction strategies in the different scenes in Section 4.3,
before considering the performance of NoiseTracer in Section 4.4.

Finally, in Chapter 5, we give a short summary of the results and discuss
future work.



2 B A C KG R O U N D

We start this chapter with a discussion of the basic theory of physically based
rendering (PBR) in Section 2.1, which forms the basis of the method intro-
duced here.

We then move on to Monte Carlo integration in Section 2.2 to provide
a solution for the problem of light transport, as well as to discuss various
methods for improving the Monte Carlo estimation.

Finally, in Section 2.3, we discuss the fundamentals of sound and the ge-
ometrical acoustics model. We then introduce the principles of atmospheric
sound propagation, as well as their integration into the PBR framework.

2.1 physically based rendering

2.1.1 Measurement Equation

The goal of rendering is to get measurements for sensors, usually light mea-
surements for pixels on a view plane, in a three-dimensional scene filled
with objects and sources. These measurements can be calculated using the
measurement equation [16],

I =
∫

M×S2
We(x, ω)Li(x, ω)| cos θ|dA(x)dω . (2.1)

Let us unpack this equation. We is the responsivity function, which describes
how much of ingoing light is measured, based on a point x and the ingoing
direction ω. The factor Li is the incoming radiance. We will explain radiance
in Section 2.1.5, for now it is enough to know that this describes how much
light arrives. This is again dependent on the point x on the sensor and on
the direction ω. The cos θ factor is due to Lambert’s cosine law, where θ is
the angle between surface normal and ω. Light may reach any surface from
any direction, so we integrate over all surfaces M using the area measure A,
and over the entire sphere S2. For a specific sensor defined by some surface
m in a scene, we define the responsivity function to be 1 if x is on m, and 0
otherwise.

The interesting part of the above equation is Li: How do we know how
much light reaches point x from a direction ω? Due to energy conservation,
we know that the incident light Li is equal to the outgoing light Lo at some
other point x′ that emits or scatters light towards x. To find point x′, we
cast a ray starting from x in the direction ω. Denoting −ω as the opposite
direction to ω, we have

Li(x, ω) = Lo(x′,−ω).

3



2.1 physically based rendering 4

x

x′

x′′

Figure 2.1: Three-point form of the light transport equation.

Any point may emit light, scatter light, or both. We denote the emitted light
as Le and the scattered light as Ls. The emitted light of a surface may be
provided in the scene configuration, whereas the scattered light must be
determined using the scattering equation [16],

Ls(x, ωo) =
∫

S2
Li(x, ωi) f (x, ωi → ωo)| cos θi|dωi . (2.2)

Here, f is the bidirectional scattering function (BSDF), which we will intro-
duce in Section 2.1.3. For now, it is enough to know that it describes how
much of the arriving light from ωi is scattered towards ωo.

Combining Le and Ls yields the light transport equation, also called ren-
dering equation [17], given by

Lo(x, ωo) = Le(x, ωo) +
∫

S2
Li(x, ωi) f (x, ωi → ωo)| cos θi|dωi

= Le(x, ωo) +
∫

S2
Lo(x′,−ωi) f (x, ωi → ωo)| cos θi|dωi ,

(2.3)

where x′ is obtained by casting a ray from x towards ωi. Here, the recursive
nature of the rendering equation becomes apparent: We have Lo on both
sides of the equation.

To get rid of directional variables ωi and ωo, we can rewrite the equation
to be solely in the area domain. For this, we define L(x′ → x) as the radiance
leaving x′ towards x, i.e.

L(x′ → x) = Li(x, x̂′ − x) = Lo(x′, x̂− x′),

where x̂− x′ is the direction pointing from x′ to x. The BSDF is rewritten as
f (x→ x′ → x′′), with

f (x→ x′ → x′′) = f (x′, ωi → ωo),

where ωi = x̂− x′ and ωo = x̂′′ − x′. Combining these leads to the three-
point form of the light transport equation [16], see also Figure 2.1,

L(x′ → x′′) = Le(x′ → x′′)

+
∫

M
L(x→ x′) f (x→ x′ → x′′)G(x↔ x′)dA(x) .

(2.4)
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The geometry factor G combines the change of variables from dω to dA as
well as the original | cos θi| factor. The change of variables is given by the
relation

dω =
dA | cos θo|

r2 , (2.5)

which will become more clear in Section 2.1.2. The geometry factor is thus
defined as

G(x↔ x′) = V(x↔ x′)
| cos θo|| cos θi|
∥x− x′∥2 , (2.6)

where θo is the outgoing angle at x, θi the ingoing angle at x′ and V is
the visibility function with V(x ↔ x′) = 1 if the line between x and x′ is
unobfuscated, i.e. x and x′ are visible to each other.

From the three-point form, we can derive the path-integral formulation
of the measurement equation [16]. A path is a sequence of points p =

(p0 . . . pi) ∈ Ω, where pi are points on surfaces of the scene and Ω is the path
space. The path-integral measurement equation is then defined as follows,

I =
∫

Ω
f (p)dµ(p) , (2.7)

f (p) =Le(p0 → p1) (2.8)

G(p0 ↔ p1) f (p0 → p1 → p2)

G(p1 ↔ p2) f (p1 → p2 → p3)

. . .

G(pk−1 ↔ pk)We(pk−1 → pk),

dµ(p) =dA(p0)dA(p1) . . . dA(pk) . (2.9)

In the above example of a path with length k, the path starts at a light source
at p0 which emits some quantity of light Le(p0 → p1) towards p1. This is
then reflected towards p2, where the amount of reflected light depends on
the BSDF of the surface of p1, described by f (p0 → p1 → p2). After a few
reflections, the light reaches a sensor and contributes to its measurement
weighted by the sensor contribution function We.

Every point on a path may be on any surface in a scene. Also, paths
may have arbitrary length. The amount of possible paths is therefore infi-
nite. Hence, it is not feasible to solve this integral analytically in all but the
most basic cases. Therefore, we have to solve it numerically. This will be dis-
cussed further in Section 2.2.2 where we will introduce Monte Carlo path
tracing.

2.1.2 Geometry

We have previously mentioned objects and scenes. Here, we discuss how
arbitrary three-dimensional objects are modeled using triangles to create
scenes, and how ray casting is implemented using ray-triangle intersection
tests. We also introduce the concepts of the solid angle as well as spherical
coordinates that allow us to describe directions on the sphere S2. Finally, we
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introduce Rodrigues’ rotation formula which we will need to rotate vectors
from local to word space.

coordinate system The choice of coordinate system is arbitrary. We fol-
low the convention of some rendering APIs and use a left-handed coordinate
system with y pointing towards the sky.

triangles Triangle meshes can be used to model arbitrarily detailed ob-
jects. A triangle △abc is defined by its three vertices a, b and c. The normal
of a triangle is calculated as follows,

n = (b− a)× (c− a), (2.10)

where × denotes the cross product, which gives a vector perpendicular to
its two operands. The area of a triangle is given by

A(△abc) =
1
2
(∥(b− a)× (c− a)∥) . (2.11)

The barycentric coordinates (u, v, w) of point p with respect to triangle△abc
are calculated as follows,

u =
A(△pbc)
A(△abc)

, (2.12)

v =
A(△pca)
A(△abc)

, (2.13)

w =
A(△pab)
A(△abc)

. (2.14)

If u + v + w = 1 and 0 ≤ u, v, w ≤ 1, the point lies inside the triangle, and is
given by

p = ua + vb + wc. (2.15)

Note that if u = 1, we have p = a. There is also an alternative notation
with p = wa + ub + vc, which follows from setting w = 1 − u − v after
rearranging of p = a + u(b− a) + v(c− a).

ray casting In the previous section, we have mentioned ray casting as
an operator to find the closest surface given an origin and direction. Given
triangle meshes, the ray casting operator is implemented using ray-triangle
intersection tests.

A ray is given by the equation

r(t) = o + td, (2.16)

where o is the origin of a ray, d is its direction and t ∈ R+ is the ray param-
eter.

For efficient calculation of ray-triangle intersections, the Möller-Trumbore
algorithm [18] is used. The algorithm works in two steps: First, we must
determine whether the ray is parallel to the plane of the triangle. If this is
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the case, then it cannot intersect. If not, we must determine where on the
plane the ray intersects, and check if this point lies inside the triangle.

Given a ray r(t) = o+ td and a triangle△abc, we first compute two edges
of the triangle as follows,

e1 = b− a,

e2 = c− a.

To see whether the ray is parallel, we compute the cross product q = d× e2.
This gives us a vector orthogonal to d and e2. We calculate the determinant
as d = e1 · q. If d = 0, the ray is parallel to the plane, so it cannot intersect.
Otherwise, the ray intersects with the plane of the triangle.

Next, we calculate the barycentric coordinates. We could use Equation 2.12,
but there is a more efficient way. As we have seen above, any point on the
triangle can be expressed as a linear combination of the two edges of the
triangle as follows,

p(u, v) = a + ue1 + ve2.

For the ray to intersect with the triangle, we must have

o + td = a + ue1 + ve2.

We can rearrange this equation to

o− a = −td + ue1 + ve2.

To find t, u and v, we need to solve the system of linear equations,−dx e1x e2x

−dy e1y e2y

−dz e1z e2z


 t

u

v

 = o− a.

We can use Cramer’s rule to solve this system. Cramer’s rule states that a
system of n linear equations for n unknowns, represented as Ax = b, has a
unique solution with

xi =
det Ai

det A
,

where Ai is the matrix with the i-th column of A replaced by column vector
b. Note that A must be invertible, i.e. its determinant must be nonzero.

The determinant of a 3× 3 matrix may be calculated using

det

a1 b1 c1

a2 b2 c2

a3 b3 c3

 = (a× b) · c = −(a× c) · b = −(c× b) · a.
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In our case, we have det A = e1 · (d× e2) = d as defined earlier. To get u, v,
and t, we finally calculate

t =
e2 · (b× e1)

d
, (2.17)

u =
b · (d× e2)

d
, (2.18)

v =
d · (b× e1)

d
, (2.19)

where b = o− a. We usually calculate u and v first, checking that 0 ≤ u, v ≤
1 and u + v ≤ 0, i.e. the ray intersects the triangle, and if this is the case,
calculate t.

spherical coordinates Two ways of parameterizing the sphere are con-
sidered here: Cartesian coordinates and spherical coordinates. Cartesian co-
ordinates are simply the (x, y, z) coordinates on the surface of a sphere.
Spherical coordinates are given by the polar angle θ, azimuth angle ϕ and
radius r. The conversion between the two is given by

x = r sin θ cos ϕ, (2.20)

y = r cos θ, (2.21)

z = r sin θ sin ϕ. (2.22)

The infinitesimal area element dA on the sphere is given by

dA = r2 sin θ dθ dϕ . (2.23)

solid angles Solid angles describe how much space an object takes in
the field of view of some observer. Or, equivalently, it describes how much
of the surface of a sphere around an observer is subtended by an object,
see Figure 2.2. Solid angles can also be understood as a generalization of the
two-dimensional angle, which can be interpreted as describing how much
of the surface of a unit circle is covered by some object. The unit for solid
angles is the dimensionless steradian (sr).

A
r

Ω

Figure 2.2: Definition of solid angle Ω. A is the area of the sphere subtended by
some object.
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Given the subtended area of the sphere A and its radius r, the steradian
Ω is given by

Ω =
A
r2 . (2.24)

The differential in spherical coordinates is thus given by

dΩ =
dA
r2 = sin θ dθ dϕ . (2.25)

In Section 2.1.1, we have used the following relationship for deriving the
path-integral form of the measurement equation,

dω =
dA | cos θo|

r2 .

The additional | cos θo| factor comes from the fact that we are integrating
over surfaces in a scene that are projected onto the unit sphere. The amount
of light exiting from a point p on a surface towards the surface of the unit
sphere depends on the angle θo between direction and surface normal at
point p, following Lambert’s law.

rotation When a ray reflects off a material, we calculate the new direc-
tion ω with respect to local space, where the y-axis is equal to the normal of
the surface and the origin is at the intersection point. The direction generated
this way has to be rotated such that it is correct in world space.

To do so, we apply Rodrigues’ rotation formula, which is given by

v′ = v cos θ + (1− cos θ)(k · v)k + k× v sin θ, (2.26)

where v is the vector to be rotated, k is the (normalized) axis of rotation and
θ is the angle of rotation.

Given the world space normal n1 = (0, 1, 0) and the unit normal of the
surface n2, we rotate a direction towards n2 on the plane n1 × n2 by setting

k =
n1 × n2

|n1 × n2|
,

θ = acos (n1 · n2) .

2.1.3 Materials

The material of an object is described by a bidirectional scattering distribu-
tion function (BSDF). A BSDF is a three-dimensional function f (p, ωo, ωi)

mapping a point on the surface p, an ingoing direction ωi and an outgoing
direction ωo to the fraction of incident radiance that is radiated along the
outgoing direction ωo. Because of energy conservation, the overall exitant
radiance must be less than or equal to the overall incident radiance at point
p, so for any ωi,∫

S2
f (p, ωo, ωi) cos θo dωo ≤ 1. (2.27)



2.1 physically based rendering 10

n1

n2

ωi

ωo

η1

η2

θ1

θ2

Figure 2.3: Refraction of incoming ray ωi towards ωo due to Snell’s law.

Note that the integral can be less than one because of possible absorption by
the material.

Two type of materials are used in this thesis. A diffuse and specular ma-
terial for describing the ground, and a transmissive material for describing
atmospheric layers.

For diffuse-specular materials, light is either reflected specularly, e.g. a
mirror, or diffusely, e.g. a concrete wall. Some amount of light may be ab-
sorbed by the surface.

For transmissive materials, light passes through the material and may be
refracted, e.g. water or a lens. The refraction of rays follows Snell’s law.
Snell’s law relates the angle of incidence θ1, the angle of refraction θ2 and
the refractive indices η1 and η2 as follows,

sin θ1

sin θ2
=

η2

η1
. (2.28)

See also Figure 2.3. We are usually interested in the angle θ2, which we can
directly calculate from Snell’s law,

θ2 = arcsin
(

η1

η2
sin θ1

)
. (2.29)

Note that this is undefined for | sin θ1 · η1/η2| > 1. In that case, we have a
total internal reflection: The ray is reflected into the medium with refractive
index η1. As we will see in Section 2.3.3, this can happen for specific wind
and temperature profiles in atmospheric sound propagation.

2.1.4 Acceleration Structures

Each time a ray is cast, intersection with each object in a scene has to be
tested. Depending on the number of objects present in a scene, this can
quickly become computationally expensive.
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b0

s1 s2

s3

b1

s4

s5

s6

b2

Figure 2.4: Bounding Volume Hierarchy: Instead of testing intersection with each
shape separately, we can test for intersection with bounding boxes b1
and b2. On intersection, we can then test the shapes contained in the
corresponding bounding box.

There are smarter approaches, exploiting the spacial separation and clus-
tering of objects. Instead of testing whether a ray intersects with each object
in a scene, we can test whether it intersects with a region in space containing
several objects, and on intersection, test each object in that region for inter-
section. This approach is called Bounding Volume Hierarchy (BVH), shown
in Figure 2.4. Starting from this basic idea, we can recursively divide regions
into smaller and smaller regions, creating a tree structure. The BVH-tree for
the space division given in Figure 2.4 is shown in Figure 2.5.

axis-aligned bounding boxes The area that surrounds a set of objects
is called a bounding box. In this work, only axis-aligned bounding boxes
(AABB) are used. As the name suggests, these boxes are defined by intervals
Ix = [xmin, xmax], one per axis, defining rectangular prisms that completely
surround a set of objects. It is easy to test for ray-AABB intersections: For
the x-axis, we solve ox + tdx = xmin and ox + tdx = xmax for t. This gives us
two values tmin and tmax that form an interval T = [tmin, tmax]. Note that tmin

does not have to be the solution to the first equation, consider for example
a bounding box with xmin = −4 and xmax = −2 with a ray originating
at ox = 0 with dx = −1. We repeat this for the other axes, and take the

b0

b1 b2

s1 s2 s3 s4 s5 s6

Figure 2.5: BVH tree for spacial division shown in Figure 2.4.
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intersection with T each time. If, at the end, T ̸= ∅, the ray intersects the
box.

bvh tree creation There are several methods for the creation of BVH
trees, with differing degrees of efficiency in creation and traversal. Starting
from the whole scene, the simplest approach is to pick an axis at random,
and either divide the space in the center of all objects with respect to the
chosen axis, or to sort the objects on the chosen axis and divide space by the
median object, which works better in cases where objects are concentrated
on certain parts of the scene. Both strategies are applied recursively, yielding
a deep binary tree where each primitive is one leaf.

More involved, but also more efficient, is the Surface Area Heuristic
(SAH) [19]. In the SAH method, we heuristically compare the traversal time
needed when splitting a certain subspace with the traversal time needed
when not splitting it, and greedily make the optimal decision based on this
heuristic.

We will now describe SAH in detail. Given a subspace b with primitives
s1, . . . , sn, we know that for any ray intersecting b, we must check if it inter-
sects with any of the n primitives. Assume that this takes some time tintersect.
If we choose not to further divide b, the computational cost for checking for
intersection will be

c = n · tintersect. (2.30)

Since we only have triangles in our scene, we know that tintersect must be
constant.

We could alternatively split the region b into two smaller regions b1 and b2.
The expected cost then depends on the probability that a ray intersects either
region. These probabilities are denoted by p(b1) and p(b2), respectively. We
also need to take into account the cost of determining which of the two
regions the ray intersects. We denote this as ttraverse. The final expected cost
when splitting the region into regions b1 and b2 is

c(b1, b2) = ttraverse + p(b1) ∑
si∈b1

tintersect(si) + p(b2) ∑
si∈b2

tintersect(si). (2.31)

The probabilities p(b1) and p(b2) are easily computed. It follows from
geometric probability that for any convex volume V1 contained in another
convex volume V2, the probability of a ray passing through V2 also passing
through V1 is the ratio of their surface areas p(A | B) = A(V1)/A(V2),
see [19]. This is where the name of this method comes from.

To decide whether to divide a region of space into smaller regions, we
simply compare c with c(b1, b2). But how do we choose b1 and b2 such that
c(b1, b2) is minimal?

First, we need to pick an axis that we want to divide space on. We could
do this at random, but it is better to pick the axis where primitives are spread
on the most, i.e. the longest axis of the current region, with respect to the
centroids of primitives. Then, we divide this space into a predefined number
of buckets. We use n = 12 buckets as suggested in [19].
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For each bucket, we keep the number of primitives and the surface area of
a minimal bounding box containing the respective primitives. Using this in-
formation, we can perform a combination of a prefix sum and suffix sum to
obtain the bucket boundary division which yields minimal cost. For the pre-
fix sum, we iterate over the buckets and store for each bucket the aggregated
approximate cost of intersecting all objects that came before. This gives us
p(b−i)∑si∈b−i

tintersect(si) for each bucket i. The suffix sum is computed analo-
gously, starting at the end of the bucket list, giving us p(b+i)∑si∈b+i

tintersect(si)

for each bucket i. Combining these two results, we have the cost of intersec-
tion for the regions b−i and b+i that are obtained from dividing b at the
boundaries of bucket i. Since ttraverse is constant, we just pick i with minimal
cost:

arg min
i

(
p(b−i) ∑

si∈b−i

tintersect(si) + p(b+i) ∑
si∈b+i

tintersect(si)

)
. (2.32)

We set ttraverse such that it is smaller than tintersect, as it is generally faster
to check a bounding box for intersection than it is to check a triangle for
intersection. Then, we can finally compare the costs of splitting with the cost
of not splitting a region, and act accordingly. We also split if not doing so
would yield in a region with too many primitives. The limit is set to 255, as
suggested in [19].

An alternative is the Linear Bounding Volume Hierarchy (LBVH) method,
which, although less efficient than SAH for intersection tests, takes less com-
putational time for tree construction [19].

Another method to speed up intersection tests is to make use of spatial
separations predefined in a scene. In our case, this will be the separation of
atmospheric layers and geometry, as we will see in Section 3.2.

2.1.5 Radiometry

So far, we have not considered the quantities carried by rays and measured
by sensors. Here, we will quickly introduce the radiometric quantities used
in rendering.

power Power ϕ measures the total amount of energy Q passing through
a region of space per unit time,

ϕ =
dQ
dt

. (2.33)

The unit of power is J/s = W.

irradiance Irradiance measures how much power arrives at an area per
unit time. Given an area A, the irradiance is

E =
ϕ

A
. (2.34)

The unit of irradiance is W/m2.
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intensity Intensity measures the angular density of emitted power. For
a sphere, this is

I =
ϕ

4π
. (2.35)

The unit of intensity is W/sr.

radiance Radiance measures irradiance with respect to solid angles,
thereby taking direction into account. It is the basic unit considered in all
light transport, and is defined as

L(p, ω) =
dEω(p)

dω
, (2.36)

where Eω(p) is the irradiance at point p perpendicular to direction ω.

2.2 monte carlo

2.2.1 Integration

There are accurate numerical integration techniques such as adaptive and
Gaussian quadrature, but they suffer from poor rate of convergence for high
dimensions or discontinuous domains [19]. A method that works well in
those cases is the Monte Carlo estimator, a Monte Carlo algorithm to solve
arbitrary integrals [19].

Given independent uniform random variables Xi ∈ [a, b], the integral∫ b
a f (x), where f (x) is a function on the domain of Xi, can be approximated

by

Fn =
b− a

n

n

∑
i=1

f (Xi). (2.37)

More generally, if the random variables are sampled from any probability
density function p(x), the integral can be approximated by

Fn =
1
n

n

∑
i=1

f (Xi)

p(Xi)
. (2.38)
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Figure 2.6: Mean squared error (MSE) versus efficiency for the alpshigh scene in-
troduced in Section 4.1. A reference render with 240 samples was used
for calculation of the MSE. As the number of samples increases, the MSE
decreases as expected, but so does the computational time required. The
best efficiency is achieved with 234 samples, afterwards, the additional
decrease in error comes with a significant increase in computational
time.

It is easy to see that the expected value of this estimator is the integral in
question:

E [Fn] = E

[
1
n

n

∑
i=1

f (Xi)

p (Xi)

]

=
1
n

n

∑
i=1

∫ b

a

f (x)
p(x)

p(x)dx

=
1
n

n

∑
i=1

∫ b

a
f (x)dx

=
∫ b

a
f (x)dx.

(2.39)

An important characteristic of an estimator is variance, which describes the
deviation from its expected value. The variance of an estimator F is defined
as

V[F] = E
[
(F−E[F])2] . (2.40)

The bias of an estimator is given by

β = E[F]−
∫

f (x)dx. (2.41)

Another important measure is the mean squared error (MSE) of an estimator,
which is defined as follows,

MSE[F] = E

[(
F−

∫
f (x)dx

)2
]

. (2.42)
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Importantly, for an unbiased estimator, MSE[F] = V[F]. Since in rendering
we usually do not have the analytical result of the integral, we can estimate
the MSE by using an accurate estimate of the integral F̃ ≈

∫
f (x)dx obtained

from a simulation with a large number of samples.
The efficiency ϵ of an estimator F combines running time and mean

squared error as follows

ϵ[F] =
1

MSE[F]τ[F]
, (2.43)

where τ[F] is the running time of the estimator F [19]. For an example,
see Figure 2.6.

2.2.2 Path Tracing

As mentioned in Section 2.1.1, for all but the most trivial cases, it is not
possible to analytically solve the measurement equation. If, however, we can
sample paths pi, we can estimate Equation 2.7 using Equation 2.38 as follows,

I ≈ 1
n

n

∑
i=1

f (pi)

qA(pi)
. (2.44)

Here, qA(p) denotes the probability density for p. How do we sample paths
pi? We can always start from a light source, as any light reaching a sensor
must have originated there. We sample p0 from some distribution qlight over
the surfaces of the light sources of a scene. Starting paths this way is also
called forwards path tracing or particle tracing.

For the next point on a path, assume the light has a spherical distribution.
We can sample any direction ω on the sphere S2, and cast a ray in this
direction. If the ray hits a surface, we have the next point p1 of our path.

We do the same for point p1: We sample an outgoing direction and cast
a ray to find the next point of the path. We continue this process until we
either hit a sensor or a ray does not hit any surface, in which case it cannot
contribute to I.

Assume we have some path p created in this way, starting at a light source
at p0 and ending at a sensor at pk for some k. The probability of this path is
then given by

qA(p) = qlight(p0)qA(p1) . . . qA(pk), (2.45)

where qA(p) is the probability density for point p in the scene. Notice that
we sampled new points using directional probabilities, but the measurement
equation and its estimator are in the area domain. We must convert between
the two using the following relation, which follows directly from Equa-
tion 2.5 (see [16]),

qA(pi) = qω(ω
out
i−1)×

| cos θin
i |

∥pi−1 − pi∥2 , (2.46)
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where pi is a point on the path, pi−1 is the previous point, ωout
i−1 is the out-

going direction at pi−1 (pointing to pi) and θin
i is the ingoing angle at point

pi.
The full estimator for a single path is thus given by

I ≈ Le(p0 → p1)

qlight(p0)

×
k−1

∏
i=1

f (pi−1 → pi → pi+1)G(pi−1 ↔ pi)

qA(pi)

× G(pk−1 ↔ pk)We(pk−1 ↔ pk)

qA(pk)
.

(2.47)

To get rid of the geometry factor and work with directional probabilities, we
calculate

G(pi ↔ pi+1)

qA(pi+1)
= V(pi ↔ pi+1)

| cos θout
i || cos θin

i+1|
∥pi − pi+1∥2 · ∥pi − pi+1∥2

qω(ωout
i )| cos θin

i+1|

=
| cos θout

i |
qω(ωout

i )
.

Since the point pi+1 is generated by casting a ray from pi, we have V(pi ↔
pi+1) = 1. Using this equality, the estimator becomes

I ≈ Le(p0 → p1)

qlight(p0)

×
k−1

∏
i=1

f (pi−1 → pi → pi+1)| cos θout
i−1|

qω(ωout
i−1)

×
We(pk−1 ↔ pk)| cos θout

k−1|
qω(ωout

k−1)
.

(2.48)

It is useful to define the throughput β for path p as follows,

β(p) =
1

qlight(p0)

(
k−1

∏
i=1

f (pi−1 → pi → pi+1)| cos θout
i−1|

qω(ωout
i−1)

)
| cos θout

k−1|
qω(ωout

k−1)
, (2.49)

with which the estimator simplifies to

I ≈ Le(p0 → p1)β(p)We(pk−1 ↔ pk). (2.50)

2.2.3 Probability Distribution Transformations

To be able to estimate an integral using Monte Carlo, we need to draw from
an arbitrary probability distribution, for example a distribution on the direc-
tions on the sphere. Most programming languages have standard libraries
with built-in methods for generating uniformly distributed random values
in the range [0, 1]. Mapping these to an arbitrary probability distribution is
easy, as we will show here.
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discrete distribution Suppose we have a set of discrete events
X = {X1, . . . , Xn} and a probability mass function p such that ∑i p(Xi) = 1.
We define a discrete cumulative distribution function Pi = ∑i

j=1 p(pj). To
sample from p given a uniformly sampled ξ ∼ U (0, 1), we simply look for
the i such that

Pi−1 ≤ ξ < Pi. (2.51)

Since ξ is uniformly distributed, we have

p(Pi−1 ≤ ξ < Pi) = Pi − Pi−1 = p(Xi). (2.52)

continuous distribution In the continuous case, we have a probabil-
ity density function p(x) with

∫
p(x)dx = 1. The cumulative distribution

function (CDF) is given by

P(x) =
∫ x

−∞
p(y)dy. (2.53)

Given a uniformly sampled ξ ∼ U (0, 1), we get a sample X ∼ p by solving
the equation

ξ = P(X) (2.54)

for X. This involves finding the inverse function of P. For an example,
see Equation 3.3.

generalization We have seen how to sample from any probability distri-
bution using uniform samples in [0, 1], effectively transforming between two
different distributions. We sometimes want to convert between distributions
in different parameterizations, for example, between Cartesian and spherical
coordinates of a sphere as shown in Section 2.1.2.

Given a d-dimensional random variable X with probability density func-
tion p(x) and a bijection T, the densities are related by

pT(y) = pT(T(x)) =
p(x)
|det JT|

, (2.55)

where JT is the Jacobian matrix of T,

JT =


∂T1
∂x1

· · · ∂T1
∂xd

...
. . .

...
∂Td
∂x1

· · · ∂Td
∂xd

 .

See [19] for a derivation in the 1D-case, which is easily generalized to higher
dimensions.
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Consider, for example, the conversion between polar coordinates (r, θ) and
Cartesian coordinates (x, y) of a disk. The transformation is given by

x = r cos θ, (2.56)

y = r sin θ. (2.57)

The Jacobian is given by

JT =

(
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

)
=

(
cos θ −r sin θ

sin θ r cos θ

)
.

The determinant is given by r(cos2 θ + sin2 θ) = r, we thus have p(x, y) =

p(r, θ)/r. Sampling (x, y) ∼ p(x, y) for some p(x, y), we get the density func-
tion for polar coordinates as

p(r, θ) = rp(x, y). (2.58)

In the three-dimensional case, we convert between spherical coordinates
and Cartesian coordinates as follows. Given the conversion described in Equa-
tion 2.20, the Jacobian is given by

JT =


∂x
∂θ

∂x
∂ϕ

∂x
∂r

∂y
∂θ

∂y
∂ϕ

∂y
∂r

∂z
∂θ

∂z
∂ϕ

∂z
∂r

 =

r cos θ cos ϕ −r sin θ sin ϕ sin θ cos ϕ

−r sin θ 0 cos θ

r cos θ sin ϕ r sin θ cos ϕ sin θ sin ϕ

 . (2.59)

The determinant is det JT = −r2 sin θ. Hence, the conversion is as follows,

p(r, θ, ϕ) = r2 sin θp(x, y, z). (2.60)

2.2.4 Variance Reduction

There is a vast number of techniques to reduce the variance of a Monte
Carlo estimator. A few of them are used widely in rendering [16], and will
be introduced here.

importance sampling Samples Xi where | f (Xi)| is large contribute more
to the value of the integral than those where | f (Xi)| is small. It is useful for
the probability p to assign a higher probability to points that have a higher
contribution to the estimate. Since we can effectively use any distribution for
sampling, as long as we weigh the contribution to the estimate accordingly
(see Equation 2.39), we can use such a distribution without adding any bias
to our estimator.

In rendering, one example is BSDF sampling [19]. When a ray hits a sur-
face, the outgoing direction is sampled according to the BSDF of the material,
sampling more in the direction where a higher fraction of energy is reflected
to. In cosine-weighted hemisphere sampling for Lambertian materials, for
example, the probability of a direction decreases with increasing angle be-
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Figure 2.7: Comparison of (a) uniform hemisphere sampling and (b) cosine-
weighted hemisphere sampling, with n = 500 samples.

tween direction and normal, as dictated by Lambert’s law. See Figure 2.7 for
a visualization of this, using n = 500 samples.

Another example of importance sampling is light or sensor sampling,
where directions for the first or last vertex of a path are chosen based on
some distribution on light sources or sensors. This is also called next event
estimation [19].

multiple importance sampling It sometimes may prove useful to sam-
ple from multiple distributions which match different areas of the domain
of the integrand, see Figure 2.8. Multiple importance sampling (MIS) is a
method to allow just that, by weighting samples from different distributions
ensuring the correctness of the estimator. Given n densities pi with ni sam-
ples Xi,j, the MIS estimator is defined as

Fn =
n

∑
i=1

1
n

ni

∑
j=1

wi(Xi,j)
f (Xi,j)

pi(Xi,j)
, (2.61)

where wi is the assigned weight.
There are different methods for weighting samples correctly. A common

weighting function is the balance heuristic [16], which takes into account the
likelihood of the current sample under all possible distributions,

wi(x) =
ni pi(x)

∑j nj pj(x)
. (2.62)

Figure 2.8: A function f for which we want to approximate the integral and two
probability density functions p1 and p2 which cover different parts of
the integral.
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Another weighting heuristic is the so-called power heuristic. For any expo-
nent β,

wi(x) =
(ni pi(x))β

∑j
(
nj pj(x)

)β
. (2.63)

The authors of [19] suggest β = 2, as this works well in practice.
For a single sample, we pick a sampling density pi with probability qi and

draw a sample X from it. The single sample estimator is then

F =
wi(X)

qi

f (X)

pi(X)
. (2.64)

stratified sampling Stratified sampling ensures a good coverage of the
interval of the integral. For example, it may be used in the case of sampling
directions on the hemisphere above a surface. To this end, we can divide the
surface of the hemisphere Λ into strata Λi with

n⋃
i=1

Λi = Λ, (2.65)

and sample points on each Λi independently [16]. The estimator for the
whole domain Λ is

F = ∑
i

viFi, (2.66)

where vi ∈ [0, 1] is the fractional volume of stratum i and Fi is defined as

Fi =
1
ni

ni

∑
j=1

f
(
Xi,j
)

. (2.67)

We will now show that the variance can be reduced by using this tech-
nique. For a stratum i, the expected value for a single sample Xi,j is

E[ f (Xi,j)] =
1
vi

∫
Λi

f (x)dx .

The variance is

V[ f (Xi,j)] =
1
vi

∫
Λi

(
f (x)−E[ f (Xi,j)]

)2 dx .

Given ni samples in stratum i, we have

V[Fi] = V

[
1
ni

ni

∑
j=1

f (Xi,j)

]
=

1
n2

i

ni

∑
j=1

V[ f (Xi,j)] =
V[ f (Xi,j)]

ni
.
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Figure 2.9: Comparison of (a) uniform stratified pattern and (b) uniform stratified
pattern with jittering, with n = 200 samples.

For the overall estimator, the variance is thus

V[F] = V

[
∑

i
viFi

]
= ∑

i
V [viFi]

= ∑
i

v2
i V [Fi]

= ∑
i

v2
i V[ f (Xi,j)]

ni
.

If we assume that ni = vin, i.e. the number of samples of a stratum is pro-
portional to its volume, we have

V[F] =
1
n ∑

i
viV[ f (Xi,j)].

We can compare this to unstratified sampling by realizing that unstratified
sampling is equivalent to picking a stratum I at random according to a prob-
ability density defined by the vi’s, and then picking a random sample X in it.
The probability of X is conditional on I, which allows us to use conditional
probability to show,

V[F] = V[F]−
ni

∑
i=1

vi(µi −Q)2,

where Q is the mean of f over the complete domain Λ. See [19] for a detailed
derivation. Note that vi(µi − Q)2 ≥ 0, so variance cannot increase by using
stratified sampling.

Usually, we use one sample per strata. In a uniform stratified pattern,
a single sample is placed in the center of each stratum. For less aliasing,
jittering can be applied: Each point is moved uniformly at random inside its
stratum. See Figure 2.9 for a comparison of the two methods.

halton sequence Jittered stratified samples can still sometimes clump
together and leave regions on the surface of a hemisphere empty. An alter-
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Figure 2.10: Comparison of (a) uniform hemisphere sampling and (b) hemisphere
sampling using the Halton sequence, with b = 2 for ξ1, b = 3 for ξ2
and n = 250 samples.

native approach for ensuring coverage of the interval of the integral is the
use of low-discrepancy sequences.

A low-discrepancy sequence is a sequence which comes close to an equidis-
tributed sequence, covering the domain evenly. One such sequence is the
Halton sequence, named after J. H. Halton [20].

The Halton sequence is based on the radical inverse of a number. The
radical inverse Φb is built by taking the digits of a number in a given base b,
reflecting these about the radix point and interpreting the resulting number
in base b. For example,

Φ10(42) = 0.24,

Φ2(2) = Φ2(102) = (0.01)2 =
1
4

.

The Halton sequence for a given base b is then defined as

(Φb(0), Φb(1), Φb(2), . . . ) . (2.68)

For multidimensional sampling, we use different bases for the different di-
mensions to avoid correlation. This can be observed in Figure 2.10, where
b = 2 was used for ξ1 and b = 3 for ξ2. The Halton-sequence is determinis-
tic, but can be randomized by randomly permutating dimensions [19].

russian roulette Russian Roulette allows us to terminate rays with
some probability, weighting non-terminated rays in a way such that the over-
all estimate stays correct. Given a termination probability q, which may be
based on values that indicate a low contribution to the overall estimate, the
ray is terminated with this probability or weighted by a factor 1/(1− q). For
a uniform random value ξ ∈ [0, 1], the new estimator is thus

F′ =

 F
1−q ξ > q,

0 else.
(2.69)
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The Russian Roulette estimator is unbiased (if F is unbiased), since

E[F′] = (1− q)
(

E[F]
1− q

)
+ q · 0 = E[F].

2.3 acoustics

2.3.1 Fundamentals

wave equation A sound wave traveling through a medium causes a
change in local air pressure away from a given ambient static pressure. This
change, denoted as p, is called acoustic pressure. Let p(x, t) be the acous-
tic pressure at time t and position x. The one-dimensional wave equation is
given by

∂2 p
∂x2 −

1
c2

∂2 p
∂t2 = 0, (2.70)

where c is the speed of sound. Since this thesis deals solely with the geo-
metrical model of acoustics (see Section 2.3.2), we refer interested readers to
Pierce [21] for a great reference.

diffraction and refraction Diffraction is the bending of waves, either
around obstacles or through openings. It plays an important role in the
propagation of sound waves. Diffraction follows directly from the Huygens-
Fresnel principle.

The Huygens-Fresnel principle states that every point on a wavefront is
itself a source of spherical wavelets. These wavelets can interfere construc-
tively or destructively, creating a new wavefront. See also Figure 2.11.

The amount of diffraction depends on the wavelength as well as the size
of the object. For an object which is much larger than the wavelength, there
is barely any diffraction. If the object is much smaller than the wavelength,
sound waves bend around the object easily, creating almost the same wave-
front on the other side of the object. If the object is of similar size, diffraction
is most noticeable. The waves will spread around the obstacle and fill the
space behind it.

Waves may be refracted when entering a medium with a different speed
of sound. This happens, for example, in the atmosphere, where temperature

(a) (b)

Figure 2.11: Wave diffraction due to the Huygens-Fresnel principle (a) through an
opening and (b) around an obstacle.
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Figure 2.12: Wave refraction into a medium with lower speed of propagation, due
to the Huygens-Fresnel principle.

and wind influence the speed of sound, leading to waves bending towards
or away from the ground. The effect can also be explained by the Huygens-
Fresnel principle, see Figure 2.12.

quantities Sound intensity E is the acoustic equivalent of irradiance
(see Equation 2.34), and is given by

E =
ϕ

A
,

where ϕ is the power carried by the sound wave and A is the area where this
power is measured. Specifically, sound intensity describes the power carried
by a sound wave per unit area perpendicular to that area in W m−2.

Sound intensity decreases with distance due to the inverse-square law.
Given a sound intensity at a distance of r1 from a sound source, the sound
intensity at a distance r2 is given by

E(r2) = E(r1)

(
r1

r2

)2

. (2.71)

The sound intensity level is given by

LE = 10 log10

(
E
E0

)
dB, (2.72)

where E0 = 1 pW/m2 is the reference sound intensity in air. The sound
pressure level is given by

Lp = 20 log10

(
p
p0

)
dB, (2.73)

where p0 = 20 µPa is the reference sound pressure in air.
Since E ∝ p2, we have

LE = 10 log10

(
E
E0

)
dB

= 10 log10

(
p
p0

)2

dB

= Lp.

(2.74)
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To be able to quickly compare different noise footprints, we use the overall
sound pressure level (OASPL) [22], which aggregates sound pressure levels
at different frequency bands f in the following way:

OASPL = 10 log10 ∑
f

10Lp( f )/10. (2.75)

frequency bands The audible range of sound is generally assumed to
be 20 Hz to 20 000 Hz. This range may be split into sets of frequencies called
bands, where each band covers a range of frequencies.

The usual division of the audible spectrum in acoustic analysis are octave
bands and 1/3 octave bands, starting from a middle frequency of 1000 Hz.
An octave is defined by two frequencies f1 and f2 with f2 = 2 f1. The center
frequency of an octave band is defined by

fc =
√

2 fmin =
fmax√

2
, (2.76)

where fmin and fmax denote the lower and upper bound of a frequency band.
For 1/3 octave bands, we further divide each octave into three sections.

The relationship between fc, fmin and fmax is then

fc = 21/6 fmin =
fmax

21/6 , (2.77)

since
(√

2
)1/3

= 21/6.

doppler effect Frequencies of a moving source are shifted due to the
Doppler effect. In this thesis, only stationary receivers are considered. Given
an emitted frequency f0, speed of sound c and speed of the sound source v,
the observed frequency is given by

f =

(
c

c∓ v

)
f0, (2.78)

where the sign of v is positive if the source is moving away from the receiver,
and negative otherwise.

In the three-dimensional case, we must take into account the unit direction
of the wavefront d, and the velocity becomes a vector v. Let θ be the angle
between d and v, and let ∥d∥ = 1,

f =

(
c

c− ∥v∥ cos θ

)
f0 =

(
c

c− d · v

)
f0. (2.79)

Applying the Doppler effect to frequency bands can lead to aliasing, i.e. ar-
tifacts due to the low resolution of frequency bands with respect to the fre-
quency spectrum.

a-weighting To account for difference in perception of loudness perceived
by the human ear, A-weighting [23] can be applied. A-weighting assigns
lower weights to low frequencies (< 103 Hz) and to high
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frequencies (> 104 Hz), as the human ear is less sensitive to these parts of
the spectrum. The formulas for A-weighting are given as follows,

RA( f ) =
1

( f 2 + 20.62)( f 2 + 121942)

· 121942 f 4√
( f 2 + 107.72)( f 2 + 737.92)

,

A( f ) =20 log10(RA( f ))− 20 log10(RA(1000)) ≈ 20 log10(RA( f )) + 2.

(2.80)

speed of sound The speed of sound in the atmosphere depends on tem-
perature T and specific humidity q,

c =
√

γaRaT(1 + 0.511q), (2.81)

where γa = 1.4 is the ratio of specific heats for dry air and
Ra = 287.058 m2/(s2K) is the gas constant for dry air [24]. The specific hu-
midity may be ignored, leading to the formula

c =
√

γaRaT, (2.82)

as also used in other works dealing with atmospheric sound propagation
such as [12] and [13].

2.3.2 Geometrical Acoustics

Solving the wave equation numerically is computationally expensive [25].
For far-field acoustics in complex outdoor scenes, computation can take
weeks. Hence, a more efficient way of modeling sound must be used. One
such model is geometrical acoustics (GA).

The central idea of GA is to model the wavefront of a sound wave as rays,
as is done for light in physically based rendering [19]. Ray-based methods
usually work in the domain of sound energy as opposed to sound pres-
sure [26]. The ray carries the necessary information for modeling the under-
lying wave in this way, i.e. frequency and energy.

A major caveat of GA methods is that they do not inherently model wave
phenomena such as diffraction and interference, albeit methods to emulate
this exist (for example, see [27] and [28]). Depending on the geometry of a
scene, diffraction may not be that relevant. The longest audible wavelength
is about 17 m. In large outdoor scenes, the geometry is usually not detailed
enough for diffraction to matter.

Diffuse and specular reflections, on the other hand, are easy to model.
However, since we do not model the phase of sound, interference due to
reflection will be treated as constructive interference.
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2.3.3 Atmospheric Effects

The established approach to modeling ray refraction due to temperature and
wind gradients in the atmosphere is to separate it into layers with linearly
varying temperature and wind between layers and solve a differential equa-
tion for the ray path between layers [11] [12] [13]. We derive the differential
equations here and show an alternative solution that can easily be integrated
into classical ray tracing with linear rays. Afterwards, we take a look at a
method for calculating the attenuation of sound in the atmosphere.

refraction due to varying propagation speed We have already
looked at how rays refract on interaction with a medium with different re-
fractive index, see Section 2.1.3. Here, we are instead interested in how rays
refract in a medium with continuously changing speed of propagation.

The speed of sound in the atmosphere depends on temperature and hu-
midity [24]. We assume a stratified atmosphere, i.e. an atmosphere where
temperature and humidity only change with height. Let c(y) be the speed of
sound at height y.

Assuming a linear change in the speed of sound, we have

c(y) = c0 + ky,

where k = dc
dy . The refractive index at height y is given by

n =
c0

c(y)
=

c0

c0 + ky
.

From Snell’s law, Equation 2.28, it follows that

n sin(θ) = const.

Taking the differential,

d
dy

(n sin(θ)) =
d

dy

(
c0

c(y)
sin(θ)

)
= 0.

Applying the product rule,

c0

c(y)
d sin(θ)

dy
+ sin(θ)

d
dy

(
c0

c(y)

)
= 0.

We first compute the derivative of the right side,

d
dy

(
1

c(y)

)
= − 1

c(y)2
dc(y)

dy
= − k

(c0 + ky)2 .

Substituting this back into the previous expression,

c0

c(y)
d sin(θ)

dy
+ c0 sin(θ)

(
− k

c(y)2

)
= 0.
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We divide by c0/c(y) to get

d sin(θ)
dy

− k sin(θ)
c(y)

= 0.

Applying the chain rule to the left term,

d sin(θ)
dy

= cos(θ)
dθ

dy
,

yields

cos(θ)
dθ

dy
− k sin(θ)

c(y)
= 0.

Solving this for dθ
dy ,

dθ

dy
=

k sin(θ)
c(y) cos(θ)

=
k

c(y)
tan(θ).

We had defined k = dc
dy , therefore the equation becomes

dθ

dy
=

dc
dy

1
c(y)

tan(θ). (2.83)

This gives us the change of direction with height. For the horizontal change
of position, we know that tan ψ = dy

dx when ψ is the angle between the
horizontal and a ray. Since θ describes the angle between the vertical (normal)
and a ray, we have to flip x and y. The change in x is therefore given by

dx
dy

= tan θ. (2.84)

These two ordinary differential equations allow us to model the ray propa-
gation.

To be able to use classical rendering methods, i.e. simple line intersec-
tion tests and transmissive BSDFs, we approximate the above phenomenon
by splicing the atmosphere in layers and applying Equation 2.28 when a
ray intersects with a new layer. The number of layers highly influences the
accuracy of this approach, as can be seen in Figure 2.13, where 4th-order
Runge-Kutta was used to solve the ordinary differential equations (ODE).
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(a)

(b)

Figure 2.13: Approximation of refraction due to continuously changing speed of
propagation. Propagation speed c(0m) = 300m/s and c(300m) =
340m/s, similar to an atmospheric profile in the evening, where air
is cooler towards the ground. Using 10 and 50 layers 0 m and 300 m in
(a) and (b), respectively.
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refraction due to wind Movement of the medium also leads to refract-
ing of rays. In the case of the atmosphere and sound, this movement is due
to wind [29].

Given a wind velocity w≪ c, we have

sin θ

c + w sin θ
= const, (2.85)

as shown in [13]. Equivalent formulations can be found in [29] and [30]. The
assumption that wind speed is much smaller than sound speed is important,
as a ray path in a moving medium is not perpendicular to its wave front
(refer to the eikonal equation in [21]), but it has been shown that using this
assumption yields acceptable results [31].

This method is also called the effective sound speed approximation [31],
since it applies Snell’s law with propagation speed according to wind, i.e.
given speed c, unit direction of the ray s and wind w,

ceff = c + s ·w = c + w⊥ sin θ, (2.86)

where the last equality is true in a two-dimensional setting if the w⊥ de-
scribes the horizontal wind speed and θ is the angle between the vertical
and the ray: Since the direction is unit, we have

s ·w = ∥w∥ cos ψ,

where ψ is the angle between s and w. In two dimensions with only horizon-
tal wind, w spans the x-axis, so ψ is the angle between x-axis and direction.
Since θ is the angle between y-axis and direction, we have ψ = π/2− θ, and
finally

∥w∥ cos ψ = w⊥ sin θ.

Let us derive the differential equations for this case. We use the formula-
tion used in [30],

c
sin θ

+ w = const. (2.87)

It can easily be seen that this is equivalent to Equation 2.85. With the ray
parameter t describing the point on a ray, we have

d
dt

( c
sin θ

+ w
)
= 0

Let us first look at the right-hand side, as it is easier:

dw
dt

=
dw
dy

dy
dt

= l
dy
dt

,

where we set l := dw
dy . Now the left side:

d
dt

( c
sin θ

)
= c

d
dt

(
1

sin θ

)
+

1
sin θ

dc
dt

.
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The right side is familiar,

dc
dt

=
dc
dy

dy
dt

= k
dy
dt

,

using k := dc
dy . For the left side,

c
d
dt

(
1

sin θ

)
= − c

sin2 θ

d sin θ

dt
= −c

cos θ

sin2 θ

dθ

dt
.

After substitution and transformation, we have

dθ

dt
=

1
sin θ k dy

dt + l dy
dt

c cos θ
sin2 θ

=
dy
dt

(
k

c cos θ
sin θ

+
l

c cos θ
sin2 θ

)
. (2.88)

Applying basic trigonometry, we have

dx
dt

= sin θ, (2.89)

dy
dt

= cos θ. (2.90)

With these three differential equations in hand, and with starting conditions
x0, y0 and θ0, we can simulate the propagation of a ray as before.

Since the effective sound speed approximation turns the moving medium
into a non-moving medium, we can use the adjusted version of Snell’s law
in Equation 2.85 for classical ray tracing. A comparison of the ray tracing
method and solving the differential equation using 4th-order Runge-Kutta
is shown in Figure 2.14. Here the number of layers has an even stronger
effect on the accuracy, especially in areas of near-horizontal ray travel.
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(a)

(b)

Figure 2.14: Approximation of refraction due to continuously changing speed of
propagation and wind. Propagation speed c(0m) = 339.2m/s and
c(100m) = 341.3m/s, wind speed w(0m) = 0m/s and w(100m) =
8m/s, sound source is at y = 10m. These parameters are taken from
Figure 3 of [30]. Using 100 and 4000 layers between 0 m and 100 m in
(a) and (b), respectively.
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attenuation Atmospheric attenuation was modeled using the method
described in the ISO-9613-1 [32] standard. The vapor pressure of water at
temperature T can be derived using the August-Roche-Magnus equation [33]
as follows,

eS = 6.1094 hPa · exp
(

17.625 · TC

TC + 243.04 ◦C

)
,

where TC = T − 273.15 is the temperature converted to Celsius. The actual
vapor pressure is dependent on the relative humidity RH, and is given by

e = RH · eS.

The molar fraction is given by

h =
e/10

p
· 100 %,

where p is the air pressure. Given the reference pressure pr = 101.325 kPa
and reference temperature T0 = 293.15 K, the relaxation frequencies are
given by

fro =

(
p
pr

)(
24 + 4.04 · 104 · h ·

(
0.02 + h

0.391 + h

))
,

frn =

(
p
pr

)(
T
T0

)−0.5
(

9 + 280 · h · exp

(
−4.17

((
T
T0

)−1/3

− 1

)))
.

The final atmospheric absorption coefficient is given by

α = 8.686 · f 2

((
1.84 · 10−11 · 1

pa/pr
·
(

T
T0

)0.5
)

+

(
T
T0

)−2.5
(

0.01275 · exp (−2239.1/T)

·
(

fro +
f 2

fro

1

)
+ 0.1068 · exp (−3352/T) ·

(
frn +

f 2

frn

1

)))
.

(2.91)

This factor is logarithmic with unit dB/m and describes the decrease in
sound pressure level based on distance. Since for rendering we use sound
radiance, we need to convert this factor accordingly.

For a given α, the difference in sound pressure level at a distance d is given
by

∆SPL = αd, (2.92)
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as described in [32]. From this, the sound intensity E′ due to atmospheric
absorption can be derived as follows,

10 log10

(
E′

E0

)
= 10 log10

(
E
E0

)
− αd

⇐⇒ E′

E0
=

E
E0
· 10−αd/10

⇐⇒ E′ = E · 10−αd/10

(2.93)

Note that this method has varying accuracy based on the specific atmo-
spheric conditions. For more details, we refer the interested reader to [32].

wind profile Only logarithmic wind profiles as described in [34] are con-
sidered here. Other profiles modeling different parts of the atmosphere exist,
for example, see [35]. These could also be approximated using the intro-
duced method of atmospheric ray tracing.

The logarithmic wind profile described in [34] was originally developed
for structural design, but can also be applied to atmospheric sound propa-
gation near a surface, up to a height of about 500 m. Given a velocity VG at
some altitude yG and a surface roughness factor α, the wind velocity V(y) at
height y is given by

V(y) = VG

(
y

yG

1/α
)

. (2.94)

Different factors are given in [34]. For example, based on balloon observa-
tions of average wind velocities at an airfield in Cardington, England, α = 5.9
for yG = 107 m and VG = 7.7 m/s was determined. This profile is shown
in Figure 2.15.

Figure 2.15: Wind profile based on recorded data at an airfield in Cardington, Eng-
land, using α = 5.9, yG = 107 m and VG = 7.7 m/s, as described in [34],
based on balloon observations of average wind velocities. Red points
show recorded values.
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s

Figure 2.16: Path of a ray in a vertically stratified atmosphere. Starting from sound
source s, the ray intersects the first atmospheric layer, which is a sur-
face with a transmissive BSDF. A new ray is traced with a refracted
direction. This repeats until a ray hits a surface, which acts as a sensor.

2.3.4 Acoustic Rendering

We can directly apply Monte Carlo path tracing as introduced in Section 2.2.2
to sound propagation. All of the radiometric qualities introduced in Sec-
tion 2.1.5 also apply to the propagation of sound using the geometrical
acoustics model [7].

Starting from a sound source position, rays are traced in directions on the
sphere around the source. When a ray hits a sensor, the carried radiance is
added to the “recording” associated with the sensor, weighted by the proba-
bility of the path as well as the BSDFs of all surfaces. Atmospheric layers are
just surfaces with a transmissive BSDF. See also Figure 2.16 for a visualiza-
tion of this process.

Sound sources are defined by their power level per frequency band Lϕ( f ),
position p and velocity v. Only point sources with a spherical directivity are
considered. The initial intensity for frequency f carried by a ray is calculated
by

ϕ( f ) = 10Lϕ( f )/10ϕ0, (2.95)

I( f ) =
ϕ( f )
4π

, (2.96)

where ϕ0 = 1 pW is the reference sound power in air. Note that I( f ) is not
sound intensity, but intensity as defined in Section 2.1.5. We cannot get radi-
ance, since a point source does not have any area. Point sources are generally
a bit awkward to consider in a physical simulation since they are physically
impossible, yet this does not invalidate the simulation results. This is also
discussed shortly in [19].

Doppler shift is applied to each frequency band depending on initial direc-
tion d and velocity v, and the resulting frequency is rounded to the nearest
frequency band.

In related works, microphones are placed in a scene [12] [13]. Here, every
triangle of a terrain in a scene is considered a microphone, as the computa-
tional complexity does not increase with the number of microphones. This
has the advantage of providing a complete noise map for a terrain, but the
disadvantage of not being able to model direct reflections from below a mi-
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crophone. However, diffuse or specular reflections towards other terrain tri-
angles are possible. It is generally assumed that diffuse reflections of sound
also follow Lambert’s cosine law as is the case for light [7] [26].

Microphones can have a Lambertian or uniform directivity modeled by the
responsivity function We. A Lambertian directivity more closely represents a
cardioid directionality in that sound reaching close to parallel to the surface
contributes less to the measurement. It is inherently modeled in path tracing
as we have derived in Section 3.1.3, since it is included in the geometry factor
between last and second-to-last path vertex, thus We(ωi) = 1 for Lambertian
microphones. For uniform microphones, we have We(ωi) = 1/(cos θi) where
θi is the angle between surface normal and ingoing direction ωi.

Remember that the measurement equation is over surfaces and spheres.
Thus, for any surface, given n samples and accumulated radiance S, the
Monte Carlo estimator gives us the absorbed sound power,

ϕ =
S
n

.

We get the sound intensity at the surface by dividing by the area of the
surface, see Equation 2.34.

It is also possible to introduce time into the equation, which leads to the
Room Acoustic Rendering Equation [7]. Time is essential for localization of
sound, so it is necessary to introduce it for the purposes of auralization [36].
In this thesis, however, we do not take time into account as we are interested
in the noise of a static scene.

variance reduction We can apply importance sampling at two instances
in our renderer: When sampling initial directions, and when sampling out-
going directions at surface reflections, i.e. BSDF sampling.

For the initial directions, we can choose to only sample the lower hemi-
sphere instead of the whole sphere around a sound source. This improves
performance significantly in scenes where the sound source is high above the
terrain and the atmospheric profile is such that above-horizontal sound rays
are refracted into the atmosphere. Going one step further, we can also use
cosine-weighted hemisphere sampling for the initial directions, if we know
that near-horizontal rays are unlikely to reach any terrain.

Multiple importance sampling has been used in bidirectional sound trac-
ing for the connection of forwards and backwards paths, see [9]. In this
thesis, we use it for the combination of specular and diffuse behavior in a
single material.

The acoustic equivalent of light sampling is microphone sampling, where
directions are chosen based on a distribution on all microphones. Due to the
nature of the scenes, where every surface is a microphone, it does not make
sense to apply this strategy. Furthermore, the presence of the atmosphere
makes finding directions towards microphones non-trivial.

Stratified sampling and the Halton sequence can naturally be applied to
the sphere or hemisphere around the sound source, as is done in [14].

Russian roulette is also straightforward in acoustic rendering, for exam-
ple, see [6], where it is used to determine whether a reflection is diffuse or
specular as well as for ray termination.
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In this chapter, we discuss the details of implementing the method described
in the previous chapter. Starting with the implementation of the rendering
engine, NoiseTracer, in Section 3.1, we move onto acceleration techniques
in Section 3.2, before finally discussing our methodology to test and validate
the implementation in Section 3.3.

NoiseTracer is developed entirely in C++. For a starting point, the guide
“Ray Tracing in One Weekend” [37] proved very helpful.

3.1 rendering

The basic functionality of NoiseTracer is as follows. First, the scene has to
be prepared. Heightmap data must be converted to triangles and the atmo-
spheric data converted into layers in three-dimensional space. All of this is
described in detail in Section 3.1.1.

Once the scene is set up, rays are traced from the sound source. We chose
to cast rays starting from the sound source (forwards path tracing), as the
probability of intersecting a sound source through atmospheric layers start-
ing from any point on the terrain is relatively low. This also allows us to
model the sound source as a point source (for which the probability of inter-
section would be zero). On intersection with an atmospheric layer, the ray is
refracted accordingly. On intersection with a surface, the carried radiance is
weighted by the aggregated throughput and measurement responsivity, and
added to the accumulated radiance of that surface, before being reflected ac-
cording to its BSDF. These matters will be discussed in Section 3.1.2 and Sec-
tion 3.1.3.

When all rays have been traced, the sound levels are calculated per surface
triangle from the accumulated radiance. This is then exported into one file
per frequency band, as well as the OASPL and A-weighted OASPL. This is
discussed shortly in Section 3.1.4.

3.1.1 Scene Creation

Heightmaps must be provided as Digital Terrain Elevation Data (DTED), en-
coded in the TIFF image format. A DTED file is simply a two-dimensional
image with heights instead of colors, stored as 16-bit or 32-bit signed inte-
gers. This data is converted into a triangle mesh by creating two triangles per
four points of heightmap data, yielding a three-dimensional approximation
of the terrain. See Figure 3.1 for an example. Triangles are created such that
all normals point towards the sky.

Scene configuration is passed in as a YAML file, see Appendix A for a full
list of available parameters. The resolution of provided DTED files may be

38
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Figure 3.1: Creation of terrain mesh from DTED input. Left shows the height in
grayscale, right shows the mesh created from this data.

low, leading to aliasing. To solve this issue, the user can provide the parame-
ter terrain.subdivisions, which determines the per-axis subdivision for all
tiles. The heights at the subdivision points are approximated using bilinear
interpolation. Each tile is further split into two triangles. For example, if the
parameter is set to two, each terrain tile will be split into four smaller tiles,
each of which will be divided into two triangles. The effect of this parameter
is shown in Figure 3.2.

Atmospheric profiles are provided in tabulated plaintext files, with one
line per atmospheric layer. See Listing 3.1 for an example. The tools di-
rectory of the repository contains several scripts to generate atmospheric
profiles.

For each atmospheric layer, two triangles are created, forming a rectangle
at the specified height with width and depth of the terrain. The associated
temperature, wind, pressure and relative humidity are stored in a data struc-
ture. The transmissive BSDF of atmospheric layers also stores the wind and
sound speed above and below the layer (with respect to the normal of the
triangle) for calculation of the refraction.

The sound power level of the sound source can either be defined over all
frequency bands, using the sound.powerLevel parameter, or by specifying
the path to a tabulated file containing one sound power level per frequency
band, using the sound.data parameter. See the tools directory for a short
script to generate such a file, and the examples directory for an example
scene using a sound file.

(a) (b)

Figure 3.2: Comparison of different tile subdivision factors s = 1 in (a) and s = 4
in (b), using identical scene configuration and heightmap.
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1 Elevation[m] Temp[K] Wind[x] Wind[z] Pressure[Pa] Rel.Humidity[%]
2 -2000 301.2 0 0 127780.0 40
3 -1500 297.9 0 0 120700.0 40
4 ...

Listing 3.1: Excerpt of the ISO Standard Atmosphere [38] in tabulated plaintext.

The height of the sound source can be defined using the
plane.position.heightAboveGround parameter, and must be given in above
ground level (AGL). To get the height of a sound source based on the created
terrain, we can use the formula for barycentric coordinates adjusted for the
xz-plane. For this, we need to calculate the area of a triangle in 2D, which
we can do as follows,

A′(△abc) =
1
2
|ax(bz − cz) + bx(cz − az) + cx(az − bz)| .

Using this definition we can calculate (u, v, w) directly from Equation 2.12,
and thus get the y-coordinate of the sound source as

py =
(
u · ay + v · by + w · cy

)
+ h,

where h is the AGL altitude. This is also called barycentric interpolation.
The materials described in the next section are either created globally us-

ing the parameter terrain.material.reflect, which determines whether
reflections are enabled at all, and the parameter terrain.material.diffuse,
which determines the fraction of sound which is reflected diffusely, or by
specifying the path to a texture file in the parameter terrain.texture.

A texture file contains the following information for each terrain tile: If
the material is absorptive, the fraction of sound reflected specularly, and, for
each frequency band, the amount of sound that is reflected. This information
is stored in binary. The tools directory in the repository contains a simple
script for creation of trivial textures, and the examples directory contains an
example scene using a texture file.

3.1.2 Materials

For every type of material, we need to define how we sample outgoing direc-
tions ωo and the BSDF f (p, ωi → ωo) that describes the amount of incident
radiance which is reflected towards ωo. Before we can do so, we need to
take a quick look at a probability distribution for specular and transmissive
materials.

dirac delta function For materials that map every ingoing direction to
a single outgoing direction, we require a probability density function with
q(ωo) = 1 for the outgoing direction, and q(ω) = 0 for every ω ̸= ωo. For
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this, we use the Dirac delta function, which is the function which is zero
everywhere except at zero, and whose integral over R is one, i.e.

δ(x) = 0 if x ̸= 0, (3.1)∫
δ(x)dx = 1. (3.2)

This is a probability density function which is 0 for all x ̸= 0, so we can
set q(ω) = δ(ωo − ω) for such materials. There is one issue: For x → 0,
δ(x)→ ∞. We will later see that the delta function appears also in the BSDF,
hence it will cancel out in the rendering equation.

diffuse-specular Let us first derive the probability densities for diffuse
and specular reflections in isolation. We will later see how we can combine
the two using multiple importance sampling as introduced in Section 2.2.4.

In the case of a diffuse reflection, we can either sample the hemisphere
above a point uniformly, or sample from a cosine-weighted distribution,
which corresponds to BSDF sampling. We start with the uniform distribu-
tion.

Each direction on the hemisphere should have the same likelihood. A
naive approach would be to sample θ uniformly from [0, π/2] and ϕ uni-
formly from [0, 2π]. The problem with this lies in how the area on the sur-
face of a sphere changes with spherical coordinates. As we have seen in Sec-
tion 2.1.2, the infinitesimal area element dA on the sphere with radius r,
dependent on the spherical coordinates, is given by

dA = r2 sin θ dθ dϕ .

Sampling θ uniformly from [0, π/2] would mean every interval of θ has
the same probability. However, since dA contains a factor sin θ, the area
represented by a small interval of θ changes across different θ values. Using
the naive approach would lead to more samples around the poles. Thus, we
derive the correct density function as follows.

For a valid probability density function, we must have∫
H2

p(ω)dω = 1.

We are looking for a uniform distribution, so p(ω) = c for some c. It follows,∫
H2

p(ω)dω = c
∫

H2
1 dω = 2π.

Thus, we have p(ω) = 1/2π. To use spherical coordinates, we convert us-
ing the result from Section 2.2.3, with p(θ, ϕ) = sin θ/2π. We can get the
marginal density for θ as follows,

p(θ) =
∫ 2π

0
p(θ, ϕ)dϕ =

∫ 2π

0

sin θ

2π
dϕ = sin θ.
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And the conditional density for ϕ,

p(θ | ϕ) =
p(θ, ϕ)

p(θ)
=

1
2π

.

We finally apply the inversion method to sample θ and ϕ given two uniform
independent random samples ξ1, ξ2 ∈ [0, 1]. The CDFs are as follows,

P(θ) =
∫ θ

0
sin θ′ dθ′ = 1− cos θ,

P(ϕ | θ) =
∫ ϕ

0
(1/2π)dϕ′ =

ϕ

2π
.

Finding the inverse functions yields

θ = cos−1 ξ1, (3.3)

ϕ = 2πξ2. (3.4)

Using Cartesian coordinates directly yields

x = sin θ cos ϕ =
√

1− ξ2
1 cos(2πξ2), (3.5)

y = cos θ = ξ1, (3.6)

z = sin θ sin ϕ =
√

1− ξ2
1 sin(2πξ2). (3.7)

For cosine-weighted sampling of the hemisphere, we want the probability
density to be proportional to cos θ,

∫
H2

p(ω)dω =
∫ 2π

0

∫ π/2

0
c cos θ sin θ dθ dϕ

= c2π
∫ π/2

0
cos θ sin θ dθ dϕ

= cπ.

Thus, p(θ, ϕ) = (cos θ sin θ) /π and p(ω) = cos θ/π. Instead of using
marginal and conditional densities as for the uniform case, we can use
Malley’s method [19] to get cosine-distributed points. Malley’s method works
by projecting uniformly distributed points on the unit disk to the hemi-
sphere, with the result following a cosine-weighted distribution.

First, we must get uniformly distributed points on the unit disk. The area
of the unit disk is π, so the probability of any point must be 1/π. In polar
coordinates, we have p(r, ϕ) = r/π, see Section 2.2.3. Thus, the marginal
and conditional densities are given as follows,

p(r) =
∫ 2π

0
p(r, ϕ)dθ = 2r,

p(ϕ | r) =
p(r, ϕ)

p(r)
=

1
2π

.
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n
ωi∥ ωr∥

ωi ωr

ωr⊥ωi⊥

Figure 3.3: Reflection of a ray ωi towards ωr on a surface with normal n.

After integration to get the CDFs and subsequent inversion, we are left with

r =
√

ξ1, (3.8)

ϕ = 2πξ2. (3.9)

Given a two-dimensional Cartesian point p generated in this way, we project
it onto the hemisphere by setting py =

√
1− p2

x − p2
z .

The specular reflection case is much simpler. First, we need to derive the
reflected direction ωr, shown in Figure 3.3. We can derive it as follows,

ωr = ωr⊥ + ωr∥

= −(−ωi⊥) + (−ωi∥)

= ωi⊥ −ωi∥

= (ωi − (n ·ωi)n)− (n ·ωi)n

= ωi − 2 (ωi · n) n.

(3.10)

The probability density function is the Dirac delta function,

p(ω) = δ(ω−ωr). (3.11)

To combine diffuse and specular reflections in a single material, we use mul-
tiple importance sampling. The fraction of incident radiance that is reflected
specularly is given by a user-defined s ∈ [0, 1], the diffusely reflected fraction
of incident radiance follows as d = 1− s. We sample the type of reflection
with probabilities qs = s and qd = 1− s. Let pd(ω) and ps(ω) be the prob-
ability density functions for diffuse and specular reflections as we derived
them in this section. The balance heuristic gives us

ws(ω) =
ps(ω)

ps(ω) + pd(ω)
,

wd(ω) =
pd(ω)

pd(ω) + ps(ω)
=

pd(ω)

pd(ω)
= 1.

Note that in the case of a diffuse reflection, ps(ω) = 0, since it is not possible
to sample the direction ωr. The final probability for the specular case is given
by

p(ω) =
qs · ps(ω)

ws(ω)
, (3.12)
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and analogously for the diffuse case. Since we divide by p(ω) in our path
tracer, this yields the correct estimate

ws(ω)

qs

F
ps(ω)

.

The amount of sound reflected depends on whether we have a specular or
diffuse reflection. In the former case, s of the incident sound is propagated
along the outgoing ray ωr. In the latter case, (1− s)/π is reflected. The BSDF
is therefore

f (p, ωo, ωi) =

d/π if ωo ̸= ωr,

δ(ωo −ωr) · s/(cos θr) else,
(3.13)

where θr is the angle between surface normal and specularly reflected direc-
tion ωr. The cos θr factor and Dirac delta function cancel out in the rendering
equation.

We show that this is a valid BSDF. Let the functions g and h be defined as

g(ωo) =

d/π if ωo ̸= ωr,

0 else,

and h(ωo) = δ(ωo − ωr) · s/(cos θr). We have f (p, ωo, ωi) = g(ωo) + h(ωo)

for any ωi and p. It follows that∫
H2(n)

f (p, ωo, ωi) cos θo dωo =
∫

H2(n)\{ωr}

d
π

cos θo dωo

+
∫

H2(n)
δ(ωo −ωr)

s
cos θr

cos θo dωo

=
d
π

∫
H2(n)\{ωr}

cos θo dωo

+
s

cos θr

∫
H2(n)

δ(ωo −ωr) · cos θo dωo

=(1− s) +
s

cos θr
cos θr

=1.

The second-to-last step holds because∫
H2(n)\{ωr}

cos θo dωo =
∫ 2π

0

∫ π/2

0
sin θo cos θo dθo dϕo

= 2π
∫ π/2

0
sin θo cos θo dθo

= π,

and ∫
δ(x− y) f (x)dx = f (y).
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transmissive For the transmissive atmospheric material, we use the ad-
justed Snell’s law to calculate the refracted direction of the ray. From Equa-
tion 2.85 follows directly

sin θ2 =
c2 sin θ1

c1 + sin θ1(u1 − u2)
, (3.14)

where θ1 is the ingoing angle, c1 is the sound speed on the side of the surface
ray is incident and u1 is the wind speed on the side of the surface the ray
is incident, adjusted for the plane the ray travels on. This is simply the dot
product of the unit direction of the ray s and the wind w1:

u1 = s ·w1.

Variables θ2, u2 and c2 are defined analogously on the opposite side of the
surface. Using this equation, we get the refracted direction ωr using the
conversion from spherical to Cartesian coordinates,

θ2 = asin(sin θ2), (3.15)

ϕ′2 = atan2(ωiz, ωix), (3.16)

ϕ2 =

ϕ′2 + 2π if ϕ′2 < 0,

ϕ′2 otherwise,
(3.17)

ωr := (sin θ2 cos ϕ2, cos θ2, sin θ2 sin ϕ2) . (3.18)

If sin θ2 > 1, the ray is instead reflected as derived in Equation 3.10. The
probability density function is trivial,

pω(ω) = δ(ω−ωr). (3.19)

The BSDF is the same as for specular materials,

f (p, ωo, ωi) =
δ(ωo −ωr)

cos θr
, (3.20)

where θr = θ2 in case of refraction, otherwise it is the angle between surface
normal and specularly reflected direction. Note that since we are tracing ra-
diance starting from the sound source, not incident radiance starting from
a microphone, we do not need to add a factor that takes care of asymme-
try [19].

3.1.3 Path Tracing

The path tracing algorithm is shown in Algorithm 1. We create paths incre-
mentally, starting at the point sound source. Each ray carries the following
information: Origin p, direction ω, the cosine of the outgoing angle with re-
spect to the surface at the origin cosTheta, the probability of the direction q,
radiance L and throughput β for each frequency band.
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Algorithm 1 Path tracing algorithm for a single path given a sound source
positioned at s.

p← s ▷ Source position
ω ∼ qsource ▷ Sample initial direction
q← qsource(ω) ▷ Probability of ω
L← I ▷ Initial radiance given by intensity, see Equation 2.96
β← 1 ▷ Initial throughput
cosTheta← 1 ▷ Cosine of direction with respect to normal

i← 0
while i < maxDepth do

p′ ← raycast(p, ω)
n← normal(p′) ▷ Front-facing normal of the surface

if (0, 1, 0) · n < 0 then
break ▷ Ray hits from below the surface

ξ ∼ U (0, 1) ▷ Sample uniformly from [0, 1]
if ξ < qrr then

break ▷ Russian Roulette termination
w← 1/(1− qrr) ▷ Russian Roulette weighting

▷ Get atmospheric attenuation between origin and intersection point. ◁
m← atmosphericAttenuationAt( 1

2 (p + p′))
d← ∥p− p′∥ ▷ Calculate Euclidean distance
L← L · 10−m·d/10 ▷ Apply atmospheric attenuation

β← β · w · cosTheta/q ▷ Update throughput

if p′ is on microphone M then
S(M)← S(M) + L · β ·We(M) ▷ Update accumulated radiance

ω′ ∼ q f ▷ Sample according to BSDF f of surface
q← q f (ω

′) ▷ Update probability
cosTheta← ω′ · n ▷ Update cosine factor
β← β · f (p′,−ω → ω′) ▷ Apply BSDF to throughput

p← p′

ω ← ω′

i← i + 1
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Initially, the ray origin is the sound source position, the direction is cho-
sen at random according to the selected method and distribution, i.e. either
uniformly sampled from the hemisphere below or sphere around the sound
source, or sampled from the hemisphere below using cosine-weighted sam-
pling. The probability of the origin is qA(p0) = 1 (since there is only a single
sound source), thus the throughput is set to one. Since the normal is equal to
the direction, the cosine is also set to one, and finally radiance is calculated
based on the configured sound power level. If the Doppler effect is enabled,
frequencies are shifted according to the velocity of the sound source.

On intersection with a surface, the throughput is updated according to the
BSDF of the material of the surface, and the radiance is updated according
to atmospheric attenuation, if enabled. If the surface is part of the terrain,
the carried radiance is weighted by the throughput and added to the mea-
surement of the surface. If a linear measurement responsivity is chosen, the
value is further divided by the cosine of the angle between surface normal
and ray direction. Then, a new direction is sampled according to the BSDF,
and all parameters are set for the next iteration of the tracing loop.

3.1.4 Output

NoiseTracer outputs one file per frequency band, which contains the coordi-
nates of each vertex of a triangle and the calculated sound intensity level of
that triangle. Additionally, only the center of each triangle and the respective
sound intensity level are returned.

The OASPL and A-weighted OASPL are returned for triangle centers, to
give one indicator over all frequency bands. Also, the total amount of sound
power received on all surfaces for the frequency band 16 Hz is returned.

Furthermore, an OBJ file is created to make visualization of the created
triangle mesh possible. For visualization of the sound intensity levels in a
three-dimensional mesh, a Python script using Matplotlib [39] is included in
the repository.

3.1.5 Numerics

Since NoiseTracer is built to run on both CPU and GPU, we use 32-bit float-
ing point numbers, as GPU hardware is optimized for floating point opera-
tions.

Floating point numbers are a limited approximation of R. An IEEE 754

floating point number consists of a 1-bit sign, 8-bit exponent and a 23-bit
mantissa. This limited storage can have a great impact on Monte Carlo sim-
ulations, where a lot of floating point operations have to be performed.

For example, the intersection point calculated using Möller-Trumbore (see
Section 2.1.2) may be above or below the actual surface. When tracing the
next ray, it may self-intersect with the surface it originates from [40]. It is
therefore important to choose a tmin that is large enough to solve such issues,
yet small enough to not miss close surfaces. To make sure rays originating
beneath terrain do not contribute to the estimate, we cull any rays which
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originate from below a surface by checking the ray direction against the
normal of the surface.

Another problem we encountered was in accumulating billions of small
numbers. Recall that for each surface in a scene, we store the absorbed sound
radiance. The radiance that reaches a surface via a ray is usually pretty small.
In one experiment, the values were in the range [0.0001, 1].

Given many samples, the accumulated radiance may become a relatively
large number. In one experiment using n = 234 samples, we could see that
the radiance at the loudest point, right beneath the sound source, reached
around 262179.

Doubling the number of samples roughly doubles the radiance for a sur-
face, if using an unbiased estimator. After a certain point, in our experiment
n = 232, this was not the case anymore. While the radiance values at most
surfaces doubled, the one that reached around ϕ only increased insignifi-
cantly.

This is due to the nature of floating point addition and subtraction. Given
two numbers with different exponents, the number with the smaller expo-
nent is brought to the same exponent by shifting the mantissa to the left. In
case the exponents differ significantly, this leads to loss of information in
the smaller number. And this, in turn, can lead to billions of additions of
a small number to a large number effecting almost no change. We thus use
double-precision floating point numbers for the accumulated radiance of a
surface.

3.2 acceleration

3.2.1 CPU

bounding volume hierarchy We implemented the Surface Area Heuris-
tic (SAH) for creation of BVH-trees. Though it takes more time to compute
the tree, traversals are generally faster than in other methods. Since the goal
of NoiseTracer is interactive use with a static scene but changing source lo-
cation, we choose the method which is more efficient for tree traversal.

special atmosphere treatment If a sound source is high above the
terrain, a ray must first traverse multiple atmospheric layers before it may
intersect with any geometry. We can improve performance by making use of
this fact.

When initializing a scene, we remember the lowest atmospheric layer
above any terrain. If the origin of a ray is above this layer, we only need
to check other atmospheric layers for intersection. If, on the other, the origin
of the ray is on or below this layer, we check all triangles for intersection.
Note that this also includes atmospheric layers, as it may be the case that
there are atmospheric layers between the lowest and highest point of terrain.

parallelization The algorithm introduced in Algorithm 1 is easily paral-
lelizable: Each thread can trace a path independently. Only when updating
the accumulated radiance must care be taken. If two threads trace paths that
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hit the same microphone at the same time, one of the contributions may be
lost. This problem is solved by using atomic operations.

OpenMP 3.0 [41] was used to parallelize computation on the CPU.
OpenMP provides the omp critical pragma to ensure data is manipulated
atomically. To ensure maximum thread occupancy, we use the omp task

pragma to enable tasking. This is more efficient than splitting the samples
among threads equally, as this could lead to a thread sleeping due to rays
hitting absorptive materials or hitting no surfaces at all.

3.2.2 GPU

One of the goals of this thesis was near real-time capability. Although ac-
celeration structures and parallelization improve performance, they can not
compete with specialized hardware. Not only are GPUs optimized for par-
allel computations, modern GPUs have built-in hardware accelerators for
building and traversing BVHs as well as for testing ray-triangle and ray-
AABB intersection.

In this thesis, we use OptiX [42] and the CUDA framework to program
Nvidia GPUs. A good introduction to the CUDA language and the intrica-
cies of programming GPUs can be found in [43].

random numbers CUDA provides a random number generation library
called cuRAND. The problem with this number generator is that it has an
expensive setup phase. Running it once per launch would lead to bad ren-
dering performance.1

An alternative is to use an efficient random number sequence generator,
such as a linear congruential generator (LCG). We still need a good initial
seed that is uncorrelated to those of other samples. For this, we can generate
random numbers on the CPU and move them to GPU memory before render-
ing, requiring only one expensive initialization, and yielding better random
values than just using LCG. We use Mersenne Twister [44] to generate seeds.

Generating seeds this way puts a limit on the number of samples, depend-
ing on the available GPU memory. For example, if the available memory is
8 GB, and each random value is a 32-bit unsigned integer, we are limited to
231 samples (not taking into account the memory required for storing scene
geometry and sound data). Since this is more than the samples supported
per OptiX launch anyway, we chose this approach. To convert unsigned in-
tegers generated by LCG to floating point numbers in the range of [0, 1), we
simply divide by the maximum number provided by the LCG.

limitations One of the biggest limitations of CUDA is that memory can-
not be allocated dynamically. All memory has to be allocated before execu-
tion of code on the GPU. Also, since GPUs are optimized for 32-bit numbers,
care had to be taken to avoid numbers higher than 232. Only for the radi-
cal inverse function used in Halton sampling were 64-bit unsigned integers
used, so that the overall number of samples may exceed 232, since using 32-

1 For example, see https://ingowald.blog/2018/11/21/rtow-in-optix-fun-with-curand/.

https://ingowald.blog/2018/11/21/rtow-in-optix-fun-with-curand/
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bit unsigned integers would lead to overflows, yielding duplicate numbers
of the sequence, defeating the purpose of the Halton sequence.

OptiX has additional limitations that influenced development. The num-
ber of rays that may be traced in a single launch is 230. For a higher number
of rays, multiple OptiX launches have to be carried out.

Additionally, the depth of recursion in OptiX is limited to 31 to ensure
small stack sizes. This is the reason why we chose to implement a path tracer,
as we wanted to support dense atmospheric layers, where a ray may travel
through a high number of atmospheric layers before hitting a surface. For
multi-sample Monte Carlo estimators, repeated recursive calls would need
to be carried out to trace new rays, quickly hitting the limit of 31. Hence, an
iterative approach is used, as shown in Algorithm 1.

3.3 testing and validation

Three key aspects of NoiseTracer have to be validated: First, that the code
works as expected. To this end, both unit tests, i.e. testing classes and func-
tions in isolation, as well as functional tests, i.e. running example scenes and
validating the results, were used. Automatic testing is performed on every
commit to make sure changes don’t break anything.

The second important aspect is the validity of the output as a physical
simulation of a real-world phenomenon. Since these validation tests require
simulations with a high number of samples, and hence a long computation
time, it usually does not make sense to include them in the functional test
suite, as they should not be executed on every commit. These validation tests
can be found in the validation directory of the repository, and are discussed
in Section 4.2.

Lastly, it is important to validate the effectiveness of variance reduction
strategies introduced in Section 2.2.4. These experiments can also be found
in the validation directory, and are discussed in Section 4.3.



4 A N A LYS I S

We start this chapter with an introduction of the test scenes that will be
considered for our analysis in Section 4.1. We continue with validating the
physical phenomena in Section 4.2, before analyizing the effectiveness of
variance reduction strategies in Section 4.3. Finally, we discuss the perfor-
mance of NoiseTracer in Section 4.4.

4.1 scenes

We consider three types of terrain for our analysis: Flat landscapes, moun-
tainscapes and canyons. All elevation data is based on the Shuttle Radar
Topography Mission [45], improved in [46] by filling missing data from var-
ious sources, or, if no data was available, using spline interpolation. The
data with a resolution of 3 arcseconds was downloaded using the SRTM
Tile Grabber developed by Derek Watkins, which can be found at https:

//dwtkns.com/srtm/. For the sake of this analysis, we assume that all tiles
are of size 90 m× 90 m. Note that this is not accurate, as the length of an
arcsecond in latitude is not constant, see Equation 2.23.

Representative of flat landscapes, we use an area in Lower Saxony cen-
tered around 53.195◦ latitude and 10.269◦ longitude near the Lüneburg Heath,
close to the hometown of the author. As can be seen in Figure 4.1a, the ter-
rain has only small changes in elevation.

For the mountainscape, we chose an area in the Alps, centered around
46.829◦ latitude and 10.742◦ longitude. This is shown in Figure 4.1b.

(a) Flat landscape (b) Alps

(c) Grand Canyon

Figure 4.1: Meshes of the three types of terrains considered in this analysis. Images
were rendered using Blender 4.1.
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For scenes representing a canyon, we chose an area in the Grand Canyon,
centered around 36.397◦ latitude and −112.586◦ longitude, visible in Fig-
ure 4.1c.

If not otherwise specified, the ISO standard atmosphere [38] was used.
Two test scenes were created for each terrain, one with a sound source high
above ground, and one with a sound source close to ground. These are
denoted flathigh, flatlow, alpshigh, alpslow, canyonhigh and canyonlow.
The scenes were chosen to demonstrate NoiseTracer’s broad applicability
and to examine whether the geometry and source altitude affect the effec-
tiveness of the variance reduction strategies. Additionally, to compare to
methods that do not support terrains with elevation, a completely flattened
scene is created.

4.2 physical accuracy

distance attenuation We can easily validate that NoiseTracer follows
the inverse-square law, see Equation 2.71, a significant property of sound
propagation, by disabling all atmospheric effects and considering a flattened
terrain.

In Figure 4.2, the analytical results are compared against a simulation with
n = 232 samples using a flat surface with dimensions 21 780 m× 19 350 m
and a sound source located at x = 10 891 m, z = 9675 m with an altitude
of 10 000 m AGL. Stratified sampling on the hemisphere below the source
was used. In the render shown, the per-triangle error of the simulation is
|ϵ| < 0.05 dB. We have repeated this experiment for m = 20 runs and found
the mean absolute error over all triangles and all runs to be µ = 0.004 dB, the
standard deviation of the absolute error σ = 0.003 dB, with absolute errors
in the range of 0 dB and 0.05 dB, showing an overall high accuracy.

We also compare our method to the one by Heath and McAninch [11],
see Figure 4.3. Unfortunately, no data is available to do a precise comparison.
A similar color map is used to allow some degree of comparison, and shows
very similar noise levels across the whole plane.

Figure 4.2: Differences in sound level between results of analytical calculation and
a simulation using n = 232 samples.
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(a) NoiseTracer (b) Heath and McAninch [11], Figure 5

Figure 4.3: Comparison of our method to a method developed by Heath and McAn-
inch [11], with a sound source at 5000 ft and disabled atmospheric ef-
fects. The simulation was done with n = 230 samples.

Figure 4.4: Effect of atmospheric attenuation on frequency bands 16 Hz and
1600 Hz.

atmospheric attenuation Atmospheric attenuation as outlined in Sec-
tion 2.3.3 applies mostly to high frequencies. In Figure 4.4, a simulation
using the flat terrain introduced in Figure 4.1a with n = 230 samples was
performed. The ISO standard atmosphere with a constant humidity of 40 %
was used, with an atmospheric layer every ∆y = 500 m. The sound source
was located in the center with an altitude of 1000 m AGL and a sound power
of Lϕ = 100 dB. Comparing the frequency bands 16 Hz and 1600 Hz shows
how low-frequency sound reaches about two kilometers farther.

temperature gradient In the ISO standard atmosphere, the tempera-
ture decreases with altitude. This is a typical temperature profile during the
day. At night, however, air near the ground cools off faster than air higher up
in the atmosphere, leading to a phenomenon called temperature inversion.

Since sound speed is dependent on temperature (see Equation 2.82), this
also affects sound propagation: During a temperature inversion, sound rays
are bent towards the ground. This can be observed in Figure 4.5, which
shows a render using the terrain shown in Figure 4.1a. In this experiment,
a sound source was placed at a height of 100 m AGL with a power of
Lϕ = 110 dB. The atmospheric profile was set such that Tday(0 m) = 295 K,
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Figure 4.5: Comparison of day and night atmospheric profile in a simulation with
n = 230 samples.

Tday(200 m) = 275 K, Tnight(0 m) = 275 K and Tnight(200 m) = 295 K. For
both day and night profiles, pressure and humidity were set to a constant
value. Temperature was interpolated linearly in ∆y = 0.5 m increments. Note
the stronger concentration of sound during the day, as more rays are re-
fracted into the atmosphere.

See also Figure 4.6 for a comparison to the method by Heath and McAn-
inch. Note that in our method, sound reaches points further away from the
sound source. Using NoiseTracer, sound reaches beyond 40 000 ft, whereas
in the method by Heath and McAninch, the shadow boundary is at about
34 000 ft away from the source. This shows the reduced accuracy of our
method due to the linear approximation of ray propagation, as shown in Fig-
ure 2.14a. An increase in the detail of the atmosphere leads to less aliasing
around the edges of the shadow boundary.

doppler effect The application of the Doppler effect is shown in Fig-
ure 4.7. Here, a simulation with a sound source at 5000 m AGL with a power
of Lϕ = 120 dB over all frequency bands was performed, with a source ve-
locity of vx = 80 m/s, using the terrain introduced in Figure 4.1a. The simu-
lation was done with n = 230 samples with atmosphere disabled to focus on
the Doppler effect. The experiment shows that sound in the 16 Hz frequency
band is shifted towards higher frequencies in the direction of travel of the
object.
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(a) NoiseTracer, ∆y = 10 ft (b) NoiseTracer, ∆y = 3 ft

(c) Heath and McAninch [11], Figure 6

Figure 4.6: Comparison of our method to a method developed by Heath and McAn-
inch [11], with a sound source at 5000 ft and a temperature gradient
of β = 0.003 54 °F/ft. The atmosphere is interpolated linearly with
∆y = 3 ft and ∆y = 1 ft. Simulations were done with n = 230 samples.

Figure 4.7: Example of the Doppler effect at (a) fc = 16 Hz and (b) fc = 20 Hz.
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wind Strong winds can lead to an acoustic shadow in the upwind area.
This effect has been reproduced in Figure 4.8. For this experiment, the wind
profile shown in Figure 2.15 was used. The sound source was positioned
at z = 105 m AGL with a sound power of Lϕ = 120 dB. To focus on the
influence of a wind gradient, atmospheric attenuation was disabled, and
temperature, humidity and pressure set to a constant value. The atmosphere
was divided into ∆y = 1 m increments. The simulation was done with n =

233 samples.
An acoustic shadow towards the left of terrain is visible. Note that in re-

ality, wind speeds are not constant. Acoustic shadows as depicted in this
example are a rare phenomenon. Also note that when using the landscape
shown in Figure 4.1a, the low altitude of the sound source leads to acous-
tic shadows due to elevations. To isolate the effect of wind, we also show a
completely flattened terrain without any elevations. The flat landscape ren-
der also shows more sound reaching in the upwind area. Since rays towards
the upwind area are bent upwards, the area that they may intersect in a
completely flattened terrain is small. If there are elevations, however, the
refracted paths may intersect terrain.

Figure 4.9 shows a comparison to APHRODITE [13]. One key difference
between APHRODITE and NoiseTracer is the way microphones are modeled:
In our method, microphones are surfaces. If we assume that the amount of
energy reaching a surface depends on the angle between surface normal
and incoming direction, i.e. we have a Lambertian responsivity, rays that are
refracted upwards intersect geometry at a low angle and therefore have a
low sound energy contribution, as shown in Figure 4.9a. In APHRODITE,
however, microphones are just points in space. This can be emulated in
NoiseTracer using a linear microphone responsivity, as shown in Figure 4.9b,
where sound level loss similar to that of APHRODITE and a method by Ols-
man and Lummer [35] in Figure 4.9c can be seen.

In Figure 4.10, we see similar sound level loss and distribution in Noise-
Tracer as in the method by Heath and McAninch [11]. Two key differences
are noticeable. First, there are differences in the shadow boundary. In Heath
and McAninch, the position x = 0 ft and y = 20 000 ft is in the acoustic
shadow, whereas NoiseTracer predicts sound there. Second, some sound
reaches points towards the left of the shadow boundary. This effect is re-
duced by increasing the detail of the atmosphere.

ground reflections The effect of ground reflections is especially no-
ticeable in mountainous scenes. We therefore chose the Alps scene shown
in Figure 4.1b to showcase this effect. Three renders with n = 232 samples are
shown in Figure 4.11. The sound source is positioned in the center and has
a sound power of Lϕ = 120 dB at an altitude of 10 000 m AGL. Atmosphere
was disabled to focus on reflections. Notice how in the absorptive and spec-
ular case, there are areas of the terrain, behind elevations, that sound does
not reach. In the diffuse case, sound is reflected towards these areas from
elevations further away from the source.
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Figure 4.8: Example of the effect of strong winds on sound propagation.

(a) NoiseTracer, with Lambertian responsiv-
ity

(b) NoiseTracer, with linear responsivity

(c) APHRODITE [13], Figure 12; col-
ors are from APHRODITE, lines
are from Olsman and Lum-
mer [35]

Figure 4.9: Comparison of our method to APHRODITE [13], using the wind profile
defined in Figure 10 in [13], interpolated linearly in ∆y = 1 m incre-
ments. Simulations were done with n = 234 samples.
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(a) NoiseTracer, ∆y = 2 m (b) NoiseTracer, ∆y = 0.2 m

(c) Heath and McAninch [11], Figure 10

Figure 4.10: Comparison of our method to a method by Heath and McAninch [11],
using the wind profile in Figure 9 in [11], interpolated linearly in
∆y = 2 m and ∆y = 0.2 m increments, with a sound source at 5000 ft.
Simulations were done with n = 230 samples.

Figure 4.11: Comparison of (a) absorptive, (b) diffuse and (c) specular ground ma-
terials.
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4.3 variance reduction

To measure the effectiveness of the variance reduction strategies introduced
in Section 2.2.4, we need a way to compare different renders of a scene. We
take the following approach: Similar to comparing the pixel values in optical
rendering, we compare the received sound power for each triangle in a scene
for a specific frequency band. In effect, for a given scene and frequency band,
NoiseTracer returns a function mapping the scene triangles t ∈ T to sound
powers1 in R+,

ϕ : T → R+.

Given the solution ϕ̃, we calculate the error of an estimate ϕ as follows,

MSE[ϕ] =
1
|T| ∑t∈T

(ϕ(t)− ϕ̃(t))2 .

Since we are interested in the single-run performance of our renderer for
the purposes of interactive use, we compare the efficiency of two variance
reduction methods by considering their average Monte Carlo efficiency. For
multiple runs with results ϕ = ϕ1, . . . , ϕn, this value is computed using the
average MSE and average time as follows,

MSE[ϕ] =
1
n

n

∑
i=1

MSE[ϕi],

τ[ϕ] =
1
n

n

∑
i=1

τ[ϕi],

ϵ[ϕ] =
1

MSE[ϕ]τ[ϕ]
.

We only take into account the 16 Hz frequency band, because we disable
atmospheric attenuation for this analysis, as it is completely deterministic.
Without atmospheric attenuation, and with a source that has the same sound
power over all bands, the sound levels will be identical in every frequency
band. All following experiments were done with 10 runs per variance re-
duction method, sample count and scene. A reference render with n = 240

samples was created for each scene.

russian roulette For a given maximum depth of dmax and minimum
depth dmin of a path, we terminate rays with probability
q(d) = (d− dmin) / (dmax − dmin). Table 4.1 shows the Monte Carlo efficien-
cies for values dmin = 30, dmax = 100. For n = 230 samples, the efficiency
increases in all but one scene. At a lower sample count of n = 225, flatlow
and canyonlow show a decreased efficiency. This may be due to the lower
computational times of τ < 1 s, where the additional operations for Rus-
sian Roulette, i.e. calculating the termination probability and reweighing the
throughput, weigh more heavily. These additional operations are amortized
with a higher sample count.

1 The code was changed for this analysis to return sound powers instead of sound intensity
levels.
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n Scene MSE τ ϵ

225

flathigh 0.999 0.948 1.056

flatlow 1.110 1.006 0.896

alpshigh 1.000 0.958 1.044

alpslow 0.986 1.000 1.013

canyonhigh 0.995 0.953 1.054

canyonlow 1.014 0.992 0.994

230

flathigh 1.002 0.904 1.104

flatlow 0.993 0.993 1.014

alpshigh 0.998 0.933 1.074

alpslow 1.014 1.000 0.987

canyonhigh 0.997 0.927 1.082

canyonlow 0.944 0.987 1.074

Table 4.1: Relative mean squared error, rendering time and efficiency due to Rus-
sian Roulette. Values relative to the renders of the same scenes with Rus-
sian Roulette disabled.

importance sampling Table 4.2 shows the effectiveness of the different
importance sampling strategies for n = 220 and n = 225 samples. In the alps
and canyon scenes, using hemisphere or cosine-weighted sampling for the
source when it has a low altitude leads to a significant increase in the MSE
relative to uniform sphere sampling, as in those cases there is terrain above
the sound source. At high altitudes, hemisphere sampling yields a lower
MSE in these scenes, and cosine-weighted sampling performs even better.

In the flat scene at high altitude, hemisphere sampling reduces the MSE
and cosine-weighted sampling improves this further. At a low altitude, hemi-
sphere sampling again yields an improvement in the error, but
cosine-weighted sampling leads to an increase of the MSE. This is due to
undersampling of directions close to the horizontal.

BSDF sampling is used for diffuse ground materials, using a
cosine-weighted distribution on the hemisphere around the normal of the
surface. We have barely found any improvements in the mean squared error
using BSDF sampling. Only in flathigh and flatlow could some decrease
in MSE be measured. To understand this, it is helpful to look at the normals
of the triangles in a terrain. For the flat scene, the mean y-component of all
normals is µ = 0.999 with σ = 0.002, for the Alps scene, we have µ = 0.907
with σ = 0.072 and finally for the canyon scene we have µ = 0.912 with
σ = 0.123. In all of these terrains, most of the surface normals point towards
the sky. Since BSDF sampling leads to more samples towards the normal of
any surface, this means that most rays are reflected back into the atmosphere
where they cannot contribute to any measurement.
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stratified and halton sampling Both stratified and Halton sampling
ensure a good coverage of directions around the sound source, especially
when using a low number of samples. Table 4.3 shows the results of ren-
ders with n = 220 and n = 225 samples. Both stratified and Halton sampling
reduce the MSE significantly, and in all but one case, Halton sampling per-
forms better than stratified sampling. An example render is shown in Fig-
ure 4.12.

Stratified sampling is especially useful in scenes with winds. Given a low
altitude and high wind speeds in the positive x direction, there are only
a few paths that lead to sound reaching positions further away from the
source in the negative x direction. Using uniform sphere sampling, these
paths are undersampled. As can be seen in Figure 4.13, stratification solves
this problem. Here, a simulation with n = 234 samples was done, once using
uniform sphere sampling, and once using stratified sphere sampling. The
terrain was completely flattened, and the wind profile from [13] was used
and interpolated linearly in ∆y = 10 m increments. The sound source was
positioned at 301 m AGL with a power of Lϕ = 150 dB.

n Scene MSE (HS) MSE (CS) MSE (BSDF)

220

flathigh 0.506 0.316 0.999

flatlow 0.456 1.134 0.969

alpshigh 0.511 0.334 1.04

alpslow 20.05 21.18 1.023

canyonhigh 0.518 0.324 1.018

canyonlow 552.0 557.0 1.035

225

flathigh 0.671 0.461 1.000

flatlow 0.598 1.643 1.077

alpshigh 0.846 0.642 1.293

alpslow 630.0 632.6 1.332

canyonhigh 1.065 0.795 1.405

canyonlow 17929 17994 2.001

Table 4.2: Relative mean squared error for different importance sampling strategies:
Hemisphere sampling (HS), cosine-weighted sampling (CS) and BSDF
sampling. All values are relative to renders using uniform sphere sam-
pling for initial directions.
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n Scene MSE (Stratified) MSE (Halton)

220

flathigh 0.520 0.465

flatlow 0.061 0.056

alpshigh 0.586 0.525

alpslow 0.170 0.152

canyonhigh 0.548 0.492

canyonlow 0.447 0.465

225

flathigh 0.246 0.216

flatlow 0.035 0.033

alpshigh 0.433 0.396

alpslow 0.270 0.267

canyonhigh 0.614 0.585

canyonlow 0.885 0.866

Table 4.3: Relative mean squared error for stratified and Halton sampling. All val-
ues are relative to those using uniform sampling.

Figure 4.12: Comparison of stratification and Halton sampling for a low sample
(n = 220) render of flathigh.

Figure 4.13: Effect of stratification in a scene with wind.
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4.4 performance

The impact of the different acceleration methods on rendering time is shown
in Table 4.4. CPU performance is improved using a separate treatment of the
atmosphere for intersection tests, and even further improved by using an ac-
celeration structure. A 6-core/12-thread AMD Ryzen 5600 with 32 GB DDR4

RAM was used for the CPU benchmarks. GPU performance beats all CPU
methods, thanks to hardware-accelerated BVH traversal, intersection tests
and massively parallel processing. A Nvidia RTX 3080 with 10 GB GDDR6X
was used for GPU benchmarks.

Note that setup time is not included in this analysis. This includes BVH
construction in the case of CPU rendering, which, depending on the scene,
can take a considerable amount of time. We have measured up to 300 s for
the alpshigh scene. There is a great potential to optimize this by choosing a
more efficient method for BVH-tree construction. Since we rely on the GPU
for efficient calculations, we did not implement any such method.

For GPU renders, there is also time required for setting up the OptiX
pipeline and BVH-tree creation on the GPU, which is also excluded in Ta-
ble 4.4. This takes about 300 ms for our example scenes. For a higher number
of samples, this additional computational cost is amortized.

Due to hardware-accelerated tree creation, tree traversal and intersection
tests, the number of triangles, and therefore the number of microphones,
does not have a significant impact on performance when running simula-
tions on the GPU, see Figure 4.14a. The number of atmospheric layers, how-
ever, has a bigger impact due to the increased path length, see Figure 4.14b.
As we have seen in Section 4.2, specifically in Figure 4.6 and Figure 4.10, the
number of layers impacts the accuracy of the simulation, especially at the
shadow boundary. Figure 2.14a has shown that for a sound source located
at 15 m, a resolution of ∆y = 1 m lead to loss in accuracy for the shown rays,
compared to the result of integration of the ordinary differential equation.
Better results were achieved with a high resolution of ∆y = 0.025 m in Fig-
ure 2.14b. Interactive simulations with such a dense atmosphere are not
feasible, since the computation would take a considerable time, as shown
in Figure 4.14b. Furthermore, the minimum ray intersection distance tmin

must be smaller than the distance between atmospheric layers. We have used
tmin = 0.1 m, as this yields good results, whereas smaller distances lead to
rendering artifacts, further limiting the feasibility of dense atmospheric ren-
dering.

To compare the efficiency of our method to that of APHRODITE [13],
we split the atmosphere into ∆y = 100 m segments and run three simula-
tions with differing sample counts on the GPU using Halton sampling on
the sphere, see Figure 4.15. We have τ(220) = 0.384 s, τ(225) = 0.723 s and
τ(230) = 11.395 s with 309478 microphones. For n = 220 and n = 225 sam-
ples, the performance of NoiseTracer beats that of APHRODITE. There, the
fastest render with about 250000 microphones took about 1.3 s on an Intel
Xeon E5-2650 V2 processor [13]. Note that this CPU is from 2013. A fairer
comparison using a modern CPU will show less difference in performance.
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Scene CPU CPU (spec. atmos.) CPU (BVH) GPU

flathigh 3.39 s 0.12 s 0.008 s 0.0006 s
flatlow 4.09 s 0.50 s 0.009 s 0.0006 s
alpshigh 10.85 s 0.99 s 0.011 s 0.0007 s
alpslow 16.06 s 2.94 s 0.013 s 0.0006 s
canyonhigh 1.84 s 0.16 s 0.007 s 0.0007 s
canyonlow 3.27 s 0.79 s 0.011 s 0.0007 s

Table 4.4: Comparison of rendering time for alpshigh with n = 210 samples, ex-
cluding scene setup time.

(a) Rendering time versus triangle count (b) Rendering time versus layer count

Figure 4.14: Impact of triangle and atmospheric layer count on rendering time. Us-
ing a flat 50 km× 50 km scene with sound source at 9500 m AGL and
atmospheric profile taken from Figure 13 in [13]. Number of triangles
was set using the subdivisions parameter. Simulations were run on the
GPU with Halton sampling and n = 230 samples. Ground reflections
were disabled.
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(a) n = 220 samples

(b) n = 225 samples

(c) n = 230 samples

Figure 4.15: Renders of scene from [13] for different sample counts. Rendering
times are τ(220) = 0.384 s, τ(225) = 0.723 s and τ(230) = 11.395 s with
309478 microphones.



5 C O N C LU S I O N

We have implemented an efficient method for approximating the ground
noise levels for an elevated sound source based on atmospheric conditions.
We have shown the validity of various physical phenomena which are sim-
ulated using this method. Furthermore, we have shown the differing effec-
tiveness of variance reduction methods in different scenes as well as the
significant performance increase due to hardware acceleration.

For scenes with a disabled atmosphere, NoiseTracer returns close to an-
alytical results. In scenes with wind and temperature gradients, we have
shown results similar to those published, yet we have also shown the re-
duced accuracy of the linear ray segment approximation. Although high
accuracy renders with dense atmospheres are possible, they are not feasible
for interactive use.

The degree of desired accuracy depends heavily on the use case. For ap-
proximate estimation of the sound distribution for given atmospheric condi-
tions, NoiseTracer may provide a helpful starting point. For more detailed
analysis, such is for example required for the noise certification of aircraft,
more accurate methods are required.

limitations and future work The accuracy of the linear ray segment
approximation has only been treated superficially. A more in-depth analysis,
including the reproduction of data of other methods for quantitative com-
parison, would offer a clearer understanding of its limitations and areas for
improvement.

Alternatively, analytical solutions to the refraction in linearly varying strat-
ified media exist, for example, see [13]. Since the goal of this thesis was to im-
plement an efficient method using GPU accelerated traversal and, more im-
portantly, intersection tests, we chose the linear ray model. Whether closed-
form solutions on the GPU can reach similar performance remains to be
investigated.

There is some promising recent work on diffraction in the geometrical
acoustics model [27] and wave-optics ray tracing [28]. The accuracy of Noise-
Tracer may be improved by integrating these advances.

Although basic texture functionality is supported by NoiseTracer, ground
impedance models used in outdoor sound propagation such as the Delany-
Bazley model, see for example [13], were not implemented, and may further
improve the accuracy of NoiseTracer.

The assumption of a sound source with spherical directivity is limited. The
extension of NoiseTracer to support directional sound sources is straightfor-
ward and would increase its applicability.

In the case of highly elevated sound sources, it may take several seconds
for sound to reach terrain. The assumption of a constant wind profile during
this propagation time lacks realism. Introducing the time domain would

66
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allow for dynamic wind profiles, which could more accurately represent
real-world conditions.

Additional optimization potential exists in the way that intersections with
atmospheric layers are tested. First, this functionality is not included in
the GPU implementation where it would lead to even better performance.
Second, instead of considering all atmospheric layers for intersection when
above the highest point of terrain, only the next layer may be tested. We pre-
dict that this would yield significantly better performance in atmospheres
with dense layers.
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A N O I S E T R A C E R PA R A M E T E R S

Name Type Description

samples size_t number of samples

maxRecursionDepth size_t maximum depth of recur-
sion

sourceSamplingMethod independent, stratified,
halton

method for sampling ini-
tial directions at sound
source

sourceSamplingDistribution uniformHemisphere,
cosineHemisphere, uni-
formSphere

distribution for sampling
initial directions at sound
source

diffuseSamplingDistribution uniform, bsdf distribution for sampling
directions on reflection

russianRouletteTermination bool Russian Roulette ray ter-
mination

bvh bool Bounding Volume Hierar-
chy for CPU rendering

Table A.1: Rendering Parameters

Name Type Description

terrain.heightmap string relative path to heightmap
data

terrain.tileWidth float width of a tile in meters

terrain.tileHeight float height of a tile in meters

terrain.subdivisions int subdivision of tiles

terrain.flatten bool [optional] flatten terrain

terrain.material.reflect bool ground reflections

terrain.material.diffuse float amount of sound that is re-
flected diffusely as opposed
to specularly

terrain.microphones.responsivity cosine, linear directionality of microphones

terrain.texture string [optional] path to texture file, overrides
terrain.material options

Table A.2: Terrain Parameters
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Name Type Description

position.x float x-coordinate of plane

position.z float z-coordinate of plane

position.heightAboveGround float AGL altitude

sound.powerLevel float sound power level in dB

sound.data string [optional] path to file containing sound power
level per frequency band

sound.velocity.x float x-velocity for Doppler effect

sound.velocity.y float y-velocity for Doppler effect

sound.velocity.z float z-velocity for Doppler effect

Table A.3: Sound Source Parameters

Name Type Description

atmosphere.enabled bool atmospheric refraction

atmosphere.data string relative path to atmospheric
profile

atmosphere.specialIntersectionTreatment bool special atmospheric treatment
for CPU rendering

atmosphere.attenuation bool enable frequency-dependent at-
tenuation

Table A.4: Atmosphere Parameters
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